gtd module¶
-
class
gtd.GTD(num_features, alpha, beta, lmbda, decay=False, **kwargs)[source]¶ Implements GTD(lambda) with linear function approximation.
Parameters: - num_features (int) – Length of weight vectors.
- alpha (float) – Primary learning rate.
- beta (float) – Secondary learning rate.
- lmbda (float) – Trace decay rate.
- decay (bool, optional) – Whether to decay alpha and beta.
-
theta¶ Primary weight vector.
-
w¶ Secondary weight vector.
-
e¶ Eligibility trace vector.
-
alpha¶ Primary learning rate.
-
beta¶ Secondary learning rate.
-
lmbda¶ Trace decay rate.
-
old_gamma¶ Discounting parameter from the previous timestep.
-
delta¶ TD-error of previous timestep.
-
tderr_elig¶ delta * e for RUPEE calculations.