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Problem Setting
Finite MDP 

Discount Reward 
Policy Evaluation

MDP Criteria Task

Finite MDP Discount Reward Policy Evaluation

Feature vector of state s
Target policy


Behavior Policy
True value of state s under target policy

Approximate value of state s

Environment Dynamics


True distribution model (for value FA)

Approx. distribution model


Approx. sample/expectation model


x = x(s)
π(a |x)
b(a |x)
vπ(s)
̂v(x, w)

p(s′�, r |s, a)
p(x′�|s, a), r(s, a)

̂p(x′�|x, a), ̂r(x, a)
x̂(x, a), ̂r(x, a)



Model Choices
model projection examples problems

Distribution
Gaussian process


Mixture Density Networks

Time-varying Gaussian

1. We don’t have a 
method to learn and 
represent a general 
distribution in a scalable 
and efficient way. 

Sample Variational Inference

GAN

1. The distribution would 
still have to be learned 
and represented.

Expection Our method

1. Learning is 
straightforward but in 
general the information 
is lost.

2. Rollout is not valid in 
general

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
̂p(x′�|x, a) ≈ Pr[xt+1 = x′�|xt = x, At = a]

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
x̂(x, a) ∼ ̂p(x′�|x, a)

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
x̂(x, a) ≈ 𝔼b[xt+1 |xt = x, At = a]



Expectation Models and 
Linear Value Functions

̂v(x, w) ← ∑
a

π(a |x)[ ̂r(x, a) + γ∑
x′�

̂p(x′�|x, a) ̂v(x′�, w)]
= ∑

a

π(a |x)[ ̂r(x, a) + γ∑
x′�

̂p(x′�|x, a)x′ �⊤w]
= ∑

a

π(a |x)[ ̂r(x, a) + γ x̂(x, a)⊤w]

Policy evaluation (via Approx. DP) with an approximate distribution model

Policy evaluation (via Approx. DP) with an approximate expectation model

∀s ∈ 𝒮, x = x(s)



Pro1: Model doesn’t need to capture stochasticity (thus is simpler). 
Pro2: Planning is fast. 
Con1: Planning doesn’t change features.

Where Should We Build 
Model Upon?

observation
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value
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Planning doesn’t directly change features,  
but may provides information for feature updates.



Linear & Non-Linear 
Expectation Models

x̂*(x, a) = F*a x
̂r*(x, a) = b*⊤

a x
F*a ≐ arg min

G
𝔼b[𝕀(At = a)∥Gxt − xt+1∥2

2]

b*a ≐ arg min
u

𝔼b[𝕀(At = a)(u⊤xt − Rt+1)2]

F*a = 𝔼b[𝕀(At = a)xt+1x⊤
t ]𝔼b[𝕀(At = a)xtx⊤

t ]−1

b*a = 𝔼b[𝕀(At = a)xtx⊤
t ]−1𝔼b[𝕀(At = a)xtRt+1]

Best Linear Expectation Model

x̂*(x, a) ≐ 𝔼b[x′�|x, a]

=
∑s∈Hx

η(s)𝔼[x(S′�) |S = s, A = a]

μ(x)
̂r*(x, a) ≐ 𝔼b[R |x, a]

=
∑s∈Hx

η(s)𝔼[R |S = s, A = a]

μ(x)

Best Non-Linear Expectation Model



Dyna-style Planning

Search 
Control Planning

Model 
Learning

Model

ϕk, Ak Value  
Policy



Limitation of Linear Models
If 

then in general 

where  

wlinear = (I − γF*⊤)−1b*, F* = 𝔼[F*Ak
ϕkϕ⊤

k ]𝔼[ϕkϕ⊤
k ]−1, b* = 𝔼[ϕkϕ⊤

k ]−1𝔼[ϕkϕ⊤
k b*Ak

]

wnon-linear = 𝔼[ϕk(ϕk − γ x̂*(ϕk, Ak))⊤]−1𝔼[r*(ϕk, Ak), ϕk]

wreal = 𝔼[ρtxt(xt − γxt)⊤]−1𝔼[ρtRt+1xt]

wlinear ≠ wnon-linear = wreal

Use non-linear expectation models instead of linear ones!
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wlinear = [0.953]⊤

wreal = [8.89]⊤

ϕk ∼ db( ⋅ )
Ak ∼ π( ⋅ |ϕk)



Limitation of TD(0) Planning 
with Linear Value Functions

Number of Steps (⇥103)

RMSE

Baird’s Counterexample

 Gradient Dyna with Non-Linear Model

 TD(0) with Linear Model
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ϕk ∼ db( ⋅ )
Ak ∼ π( ⋅ |ϕk)
̂v(ϕk) ← ̂r(ϕk, Ak) + γ x̂(ϕk, Ak)⊤w



Gradient Dyna

MB-MSPBE(w) = 𝔼[Δkϕk]⊤𝔼[ϕkϕ⊤
k ]−1𝔼[Δkϕk]

Δk = ̂r(ϕk, Ak) + γw⊤x̂(ϕk, Ak) − w⊤ϕk

Model-Based Mean Square Projected  
Bellman Error (MB-MSPBE)

MB-MSPBE = MSPBE, if 

Mean Square Projected  
Bellman Error (MB-MSPBE)

MSPBE(w) = 𝔼[ρtδtxt]⊤𝔼[xtx⊤
t ]−1𝔼[ρtδtxt]

δt = Rt+1 + γw⊤xt+1 − w⊤xt

ϕk ∼ db( ⋅ )
Ak ∼ π( ⋅ |ϕk)
̂r = ̂r*, x̂ = x̂*



Gradient Dyna

∇MB-MSPBE(w) = 𝔼[(γ x̂(ϕk, Ak) − ϕk)ϕ⊤
k ]𝔼[ϕkϕ⊤

k ]−1𝔼[Δkϕk]



Gradient Dyna
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Number of Steps (⇥103)

Loss (⇥10�3) Loss

Four Rooms Mountain Car

GDP with Learned Expectation Model

GDP with Perfect Sample Model

Number of Steps (⇥103)

ALSTD = 𝔼[ρtxt(xt − γxt)⊤]
cLSTD = 𝔼[ρtRt+1xt]

loss = ∥ALSTDw − cLSTD∥2
2



Take-home Messages

1) if the dynamics is stochastic and you want to use expectation model, 
then in general you need to use linear state value function 

2) you want to use non-linear expectation model instead of linear one  
3) Gradient Dyna-style planning converges to min MB-MSPBE even if 

your model is bad and the model training data distribution and model 
testing data distribution are different. 

4) if your model is perfect and there is no such distribution mismatch, 
then MB-MSPBE = MSPBE


