
Planning with
Expectation Models

Tea Time Talk

2019/06/06

Model-based
Reinforcement Learning

Environ
ment Planning

model

value
policy

At

Model-
free

Learning
Rt+1

Model
Learning

xt+1

Rt+1

Feature
Mapping

St+1

Problem Setting
Finite MDP

Discount Reward
Policy Evaluation

MDP Criteria Task

Finite MDP Discount Reward Policy Evaluation

Feature vector of state s
Target policy

Behavior Policy
True value of state s under target policy

Approximate value of state s

Environment Dynamics

True distribution model (for value FA)

Approx. distribution model

Approx. sample/expectation model

x = x(s)
π(a |x)
b(a |x)
vπ(s)
̂v(x, w)

p(s′�, r |s, a)
p(x′�|s, a), r(s, a)

̂p(x′�|x, a), ̂r(x, a)
x̂(x, a), ̂r(x, a)

Model Choices
model projection examples problems

Distribution
Gaussian process

Mixture Density Networks

Time-varying Gaussian

1. We don’t have a
method to learn and
represent a general
distribution in a scalable
and efficient way.

Sample Variational Inference

GAN

1. The distribution would
still have to be learned
and represented.

Expection Our method

1. Learning is
straightforward but in
general the information
is lost.

2. Rollout is not valid in
general

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
̂p(x′�|x, a) ≈ Pr[xt+1 = x′�|xt = x, At = a]

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
x̂(x, a) ∼ ̂p(x′�|x, a)

̂r(x, a) ≈ 𝔼b[Rt+1 |xt = x, At = a]
x̂(x, a) ≈ 𝔼b[xt+1 |xt = x, At = a]

Expectation Models and
Linear Value Functions

̂v(x, w) ← ∑
a

π(a |x)[̂r(x, a) + γ∑
x′�

̂p(x′�|x, a) ̂v(x′�, w)]
= ∑

a

π(a |x)[̂r(x, a) + γ∑
x′�

̂p(x′�|x, a)x′ �⊤w]
= ∑

a

π(a |x)[̂r(x, a) + γ x̂(x, a)⊤w]

Policy evaluation (via Approx. DP) with an approximate distribution model

Policy evaluation (via Approx. DP) with an approximate expectation model

∀s ∈ 𝒮, x = x(s)

Pro1: Model doesn’t need to capture stochasticity (thus is simpler).
Pro2: Planning is fast.
Con1: Planning doesn’t change features.

Where Should We Build
Model Upon?

observation

features

features

value

observation

features

features

value

Model

3

2

1

t t+1

Planning doesn’t directly change features,
but may provides information for feature updates.

Linear & Non-Linear
Expectation Models

x̂*(x, a) = F*a x
̂r*(x, a) = b*⊤

a x
F*a ≐ arg min

G
𝔼b[𝕀(At = a)∥Gxt − xt+1∥2

2]

b*a ≐ arg min
u

𝔼b[𝕀(At = a)(u⊤xt − Rt+1)2]

F*a = 𝔼b[𝕀(At = a)xt+1x⊤
t]𝔼b[𝕀(At = a)xtx⊤

t]−1

b*a = 𝔼b[𝕀(At = a)xtx⊤
t]−1𝔼b[𝕀(At = a)xtRt+1]

Best Linear Expectation Model

x̂*(x, a) ≐ 𝔼b[x′�|x, a]

=
∑s∈Hx

η(s)𝔼[x(S′�) |S = s, A = a]

μ(x)
̂r*(x, a) ≐ 𝔼b[R |x, a]

=
∑s∈Hx

η(s)𝔼[R |S = s, A = a]

μ(x)

Best Non-Linear Expectation Model

Dyna-style Planning

Search
Control Planning

Model
Learning

Model

ϕk, Ak Value
Policy

Limitation of Linear Models
If

then in general

where

wlinear = (I − γF*⊤)−1b*, F* = 𝔼[F*Ak
ϕkϕ⊤

k]𝔼[ϕkϕ⊤
k]−1, b* = 𝔼[ϕkϕ⊤

k]−1𝔼[ϕkϕ⊤
k b*Ak

]

wnon-linear = 𝔼[ϕk(ϕk − γ x̂*(ϕk, Ak))⊤]−1𝔼[r*(ϕk, Ak), ϕk]

wreal = 𝔼[ρtxt(xt − γxt)⊤]−1𝔼[ρtRt+1xt]

wlinear ≠ wnon-linear = wreal

Use non-linear expectation models instead of linear ones!

0.8

0.9

0.6

0.7

0.2

0.1

0.4

0.3

S2 S1

wlinear = [0.953]⊤

wreal = [8.89]⊤

ϕk ∼ db(⋅)
Ak ∼ π(⋅ |ϕk)

Limitation of TD(0) Planning
with Linear Value Functions

Number of Steps (⇥103)

RMSE

Baird’s Counterexample

 Gradient Dyna with Non-Linear Model

 TD(0) with Linear Model

9

5

7

3

1
0 2 4 6 8 10

ϕk ∼ db(⋅)
Ak ∼ π(⋅ |ϕk)
̂v(ϕk) ← ̂r(ϕk, Ak) + γ x̂(ϕk, Ak)⊤w

Gradient Dyna

MB-MSPBE(w) = 𝔼[Δkϕk]⊤𝔼[ϕkϕ⊤
k]−1𝔼[Δkϕk]

Δk = ̂r(ϕk, Ak) + γw⊤x̂(ϕk, Ak) − w⊤ϕk

Model-Based Mean Square Projected
Bellman Error (MB-MSPBE)

MB-MSPBE = MSPBE, if

Mean Square Projected
Bellman Error (MB-MSPBE)

MSPBE(w) = 𝔼[ρtδtxt]⊤𝔼[xtx⊤
t]−1𝔼[ρtδtxt]

δt = Rt+1 + γw⊤xt+1 − w⊤xt

ϕk ∼ db(⋅)
Ak ∼ π(⋅ |ϕk)
̂r = ̂r*, x̂ = x̂*

Gradient Dyna

∇MB-MSPBE(w) = 𝔼[(γ x̂(ϕk, Ak) − ϕk)ϕ⊤
k]𝔼[ϕkϕ⊤

k]−1𝔼[Δkϕk]

Gradient Dyna

1

2

3

4

5

0
0 400200 300100 0 20001000 1500750

1

2

3

4

0

5

Number of Steps (⇥103)

Loss (⇥10�3) Loss

Four Rooms Mountain Car

GDP with Learned Expectation Model

GDP with Perfect Sample Model

Number of Steps (⇥103)

ALSTD = 𝔼[ρtxt(xt − γxt)⊤]
cLSTD = 𝔼[ρtRt+1xt]

loss = ∥ALSTDw − cLSTD∥2
2

Take-home Messages

1) if the dynamics is stochastic and you want to use expectation model,
then in general you need to use linear state value function

2) you want to use non-linear expectation model instead of linear one
3) Gradient Dyna-style planning converges to min MB-MSPBE even if

your model is bad and the model training data distribution and model
testing data distribution are different.

4) if your model is perfect and there is no such distribution mismatch,
then MB-MSPBE = MSPBE

