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What are Metrics?

A metric/distance function, d, is a pairwise function over a set 2 which satisfies
certain properties:

e Non-negativity: d(x,x") > 0

Identity of indiscernibles: d(x,x") =0 < x =X’

Symmetry: d(x, x") = d(x’, x)

Triangle Inequality: d(x, x") < d(x, x") + d(x', x")

Popular metrics in ML: Mahalanobis distance, MinkowskKi
distance, Euclidean distance etc.



Sure. But, how are Metrics
related to State
Representations?
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Motivating Example
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Here, @, captures the geometry of the

problem making regular metrics — like
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So should ® be based only on
transition dynamics for RL agents?

Arguably not.. So what would other
good options be?

And more importantly, do we need a different
learning algorithm for each?



So should @ be based only on

transmon dynamics for RL agents’?

Key guestions:

- How do we learn a good @, such that the
usual d's are meaningful?
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- Can we learn all ®'s the same way despite

éthe metric they are trying to reflect?
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Some RL details

Given a d-dimensional representation space ¢ € R

Successor Feature Sample of Successor Feature
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Successor Features Sample of Successor Features

W(8) = [W,008), Pri(8) -, Wrog®IT  WH() = [Wr0(9), Uy 1(5), ..., Pry(9)]"



State Representations for
Metrics via Supervision

Let’s assume we have access to a good supervision space (‘P).
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Let’s assume we have access to a good supervision space (‘P).
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captures the metric in \P.

We would like a ® that:

e Represents observations that are close in the supervision space (\V),
to be close in the representation space (D).
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Great! What do the results
look like for this ©?
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Let’s assume we have access to a good supervision space (‘P).

With this, we would like to learn a representation space (®), that
captures the metric in \P.

We would like a ® that:

e Represents observations that are close in the supervision space (\V),
to be close in the representation space (D).

e Takes into account observations that have not been seen.
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Does this ® account for the
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(Maybe) Interesting. But how does an
Interactive agent have access to good
supervision spaces?

One solution may be to use supervision
spaces that can be learned
incrementally too?
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With this, we would like to learn a representation space (®), that
captures the metric in \P.

We would like a ® that:

e Represents observations that are close in the supervision space (\V),
to be close in the representation space (D).

e Takes into account observations that have not been seen.
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With this, we would like to learn a representation space (®), that
captures the metric in \P.

We would like a ® that:

e Represents observations that are close in the supervision space (\V),
to be close in the representation space (D).

e Takes into account observations that have not been seen.
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Conclusions

v Compact representation
of information

Vv’ Possible to use multiple
supervision signals

v Amenable for incremental
learning (depending on
the supervision)

- Access to good

supervision information.

- Negative sampling in
higher dimensions?

- Are representations with

these properties
sufficient?

Thank you!



