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Outline
A metric/distance function, � , is a pairwise function over a set �  which satisfies 
certain properties:


• Non-negativity: � 


• Identity of indiscernibles: � 


• Symmetry: � 


• Triangle Inequality: �

d !

d(x, x′�) ≥ 0

d(x, x′�) = 0 ⟺ x = x′�

d(x, x′�) = d(x′�, x)

d(x, x′�′�) ≤d(x, x′�) + d(x′�, x′ �′�)

• Definition of metrics


• Motivate utility of metrics in State Representations


• Quick review of some RL terms


• Discuss desirable property of Representation Space 


• Incorporate the property in Representation Space


• Empirical evidence for the above


• Conclusion



What are Metrics?
A metric/distance function, � , is a pairwise function over a set �  which satisfies 
certain properties:


• Non-negativity: � 


• Identity of indiscernibles: � 


• Symmetry: � 


• Triangle Inequality: �

d !

d(x, x′�) ≥ 0

d(x, x′�) = 0 ⟺ x = x′�

d(x, x′�) = d(x′ �, x)

d(x, x′�′�) ≤d(x, x′ �) + d(x′ �, x′ �′ �)

Popular metrics in ML: Mahalanobis distance, Minkowski 
distance, Euclidean distance etc.



Sure. But, how are Metrics 
related to State 

Representations?
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Here, ! , captures the geometry of the 
problem making regular metrics — like 

Euclidean distance — useful. 

Φ



What was this magical !
encoding?

Φ

The Laplacian
A space where states close in time are embedded to be 
close, and states far in time and embedded to be far.



What was this magical !
encoding?

Φ

The Laplacian
A space where states close in time are embedded to be 
close, and states far in time and embedded to be far.

Recent work that makes learning them incrementally feasible:  
“The Laplacian in RL: Learning Representations with Efficient 

Approximations”, Wu et. al, ICLR, 2018.



So should !  be based only on 
transition dynamics for RL agents?

Φ

Arguably not.. So what would other 
good options be?

And more importantly, do we need a different 
learning algorithm for each?



So should !  be based only on 
transition dynamics for RL agents?

Φ

Possibly not.. So what would other 
good options be?

And maybe more importantly, do we need a 
different learning algorithm for each?

Key questions:  
 
- How do we learn a good ! , such that the 
usual d's are meaningful? 

- Can we learn all � 's the same way despite 
the metric they are trying to reflect?

Φ

Φ



Some RL details

Successor Feature 
 

� 
Ψπ,i(s) = (π,P[
∞

∑
t= 0

γtϕi(St) S0 = s]

Successor Features  
 
� 
Ψπ(s) = [Ψπ,0(s), Ψπ,1(s), . . . , Ψπ,d(s)]T

Sample of Successor Feature 
 

� 
Ψ∼
π,i(s) = [

∞

∑
t= 0

γtϕi(St) S0 = s, π, P]

Sample of Successor Features  
 
� 
Ψ∼

π (s) = [Ψ∼
π,0(s), Ψ∼

π,1(s), . . . , Ψ∼
π,d(s)]T

Given a d-dimensional representation space � :ϕ ∈ℜd×1



State Representations for 
Metrics via Supervision

Let’s assume we have access to a good supervision space (� ).Ψ



Let’s assume we have access to a good supervision space (� ).Ψ

State Representations for 
Metrics via Supervision

Supervision space? 

A space that has good metric 
properties.



Let’s assume we have access to a good supervision space (� ).


With this, we would like to learn a representation space (� ), that 
captures the metric in � .
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Let’s assume we have access to a good supervision space (� ).


With this, we would like to learn a representation space (� ), that 
captures the metric in � .
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State Representations for 
Metrics via Supervision

Why don’t we just use the 
supervision space as the 

representation space? 

- generalization 
- dimensionality 

- availability 
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State Representations for 
Metrics via Supervision

Turns out, learning top eigenvectors (or 
left singular vectors) of !  (or ! ) as !  

would be great for this. 
Ψ ΨΨT Φ
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But, how do we do that?
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NON-LINEAR
NETWORK :

Representation
Space, 

LINEAR
NETWORK

Supervision
Space, 

Observation
Space, 



Let’s assume we have access to a good supervision space (� ).
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The loss optimized with backprop: 
 



Great! What do the results 
look like for this ! ?Φ
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But, the wall.. why does that happen?  
.. Neural networks generalize. 

Okay, how do we prevent it?
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Maybe by negative sampling/hallucinating 
observations? 

 
That is, force the neural net optimization to 

account for these states.



Let’s assume we have access to a good supervision space (� ).


With this, we would like to learn a representation space (� ), that 
captures the metric in � . 
 
We would like a �  that:
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State Representations for 
Metrics via SupervisionHow does that modify the loss? 

 
Changes 

to 
 



Does this !  account for the 
walls?

Φ
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Does this !  account for the 
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Φ
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(Maybe) Interesting. But how does an 
interactive agent have access to good 
supervision spaces?

One solution may be to use supervision 
spaces that can be learned 

incrementally too?
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Use a supervision space that is amenable to incremental learning.
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Use a supervision space that is amenable to incremental learning.

How does that modify the loss? 
 
Changes 

to 

     
       where,                                           , TD target!     



Conclusions

- Access to good 
supervision information.


- Negative sampling in 
higher dimensions?


- Are representations with 
these properties 
sufficient?

✓Compact representation 
of information


✓Possible to use multiple 
supervision signals


✓Amenable for incremental 
learning (depending on 
the supervision)

Thank you!


