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Markov Decision Process 
(MDP)

� ,       � 


�

M = ⟨S, A, P, γ, R⟩ π(s) : S → A

Qπ(s, a) = 𝔼 [
∞

∑
k=0

γkR(st+k, at+k) |st = s, at = a, π]
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M = ⟨S, A, P, γ, R⟩ π(s) : S → A

Qπ(s, a) = 𝔼 [
∞

∑
k=0

γkR(st+k, at+k) |st = s, at = a, π]
Q*(s, a) = max

π∈∏
Qπ(s, a) π*(s) = arg max

a∈A
Q*(s, a)
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Adding a reward in without constraint [1]:
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R′� := R + F

1. Randløv, J., and Alstrøm, P. 1998. Learning to drive a bicycle using reinforcement learning and shaping
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Potential-Based Reward 
Shaping (PBRS)

Constrain with PBRS [2]:


� 
R′� := R +
γΦ(s′�)−Φ(s)⏞
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2. Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance under reward transformations: Theory and 
application to reward shaping.
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Dynamic PBRS 

• Dynamic PBRS [4]:


• Used state-based dynamic PBRS in single and multi-
agent RL


• Proved the policy invariance


• Even before �  stabilizeΦ

4. Devlin, S. M., & Kudenko, D. (2012). Dynamic potential-based reward shaping.
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Still need to define !Φ

• Expressing any arbitrary rewards as potential-based 
advice [5]:


• Dynamic state-action shaping


• Learning �  as a value functionΦ

5. Harutyunyan, A., Devlin, S., Vrancx, P., & Nowé, A. (2015, February). Expressing arbitrary reward 
functions as potential-based advice.
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Experiments: Dynamic 
PBRS

Sarsa(0), �  � -greedy policy
γ = 0.3, ϵ
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Experiments: Soft-Shaped



Summary

•A brief overview of the RL shaping 
literature

•Pointing out the necessary correction of 
bias term in dynamic PBRS framework

•Supporting Experiments

•A possible solution



Thanks for attending!


