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Goal

Give an overview of our conclusions from exploring 
resampling for off-policy prediction.



Outline

• Background


• Reweighting Vs Resampling


• Empirical Results


• Conclusions


• Future directions and perspectives
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The Agent

Agent { Behavior

Predictions (forecasts)

• Q-learning, Actor Critic, PG…



The Agent
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Predictions (forecasts)
• Q-learning, Actor Critic, PG…

Buffer of Experience, B
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General Value Function

Cumulant
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General Value Function

At:∞ ∼ π
Target Policy
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Off-policy Learning

Learn about a target policy      using data generated  
from a behavior policy     .

π
b



Off-policy Learning

' [Δw(A) |A ∼ π]

= ' [ρ(A)Δw(A) |A ∼ b]

Want

Have



Off-policy Learning
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Off-policy Learning
Importance Sampling (IS): Importance Resampling (IR):
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Off-policy Learning

Importance Sampling (IS)

Importance Resampling (IR)VTrace(0)

With a buffer of experience

WIS-Minibatch

Reweighting Resampling



Hypothesized Empirical Benefits

• IR reduces the update variance as compared with IS.


• IR can update less to learn more (sample efficiency).



Variance in Off-policy Prediction

Var {ΔIS} = Var
1
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1

Update Variance:

Benefits of reduced update variance:

• Reduced sensitivity to learning rate.


• Faster learning



Empirical Results



Markov Chain

…
C = 1C = 0



Markov Chain
Estimating the Update Variance:

π(a |s) = {0.1 if a = left
0.9 if a = rig h t

Behavior: Target:

b(a |s) = {0.9 if a = left
0.1 if a = rig h t

{ρi, si, ai, s′�i}

Minibatch 1

Minibatch 2

Minibatch 1000

…

Δ1
*

Δ2
*}Var{∥Δ*∥1}
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Markov Chain - Learning Rate Sensitivity
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Continuous Four Rooms



Continuous Four Rooms

Noise

Actual movement



Continuous Four Rooms
Evaluation:

• Sampled 1000 states from the stationary distribution 
of the behavior policy


• Estimated returns with 100 Monte Carlo rollouts

b( ⋅ |s) = 0.25 π1(a |s) = {1 if a = down
0 o.w.

Behavior: Target:



Cont. Four Rooms - Total Updates
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Conclusions

1. Resampling can have lower variant updates as 
compared to importance sampling. 


2. Resampling generally needs fewer updates to reach 
comparable performance to importance sampling.


3. Resampling and importance sampling perform 
comparably when many samples are used.



Buffer of experience

Should we update all predictions at every 
interaction?

Maybe not?

Do we have to update all predictions at every 
interaction?



Questions?

https://arxiv.org/pdf/1906.04328.pdf

Theory!

More Experiments!

Weird behavior of induced bias!!

@mattschleg

github.com/mkschleg

coffeesideai.com

mkschleg


