Importance Resampling:

Conclusions and Future Perspectives

Matthew Schlegel, Wes Chung, Jian Qian, Daniel Graves, and Martha White

Goal

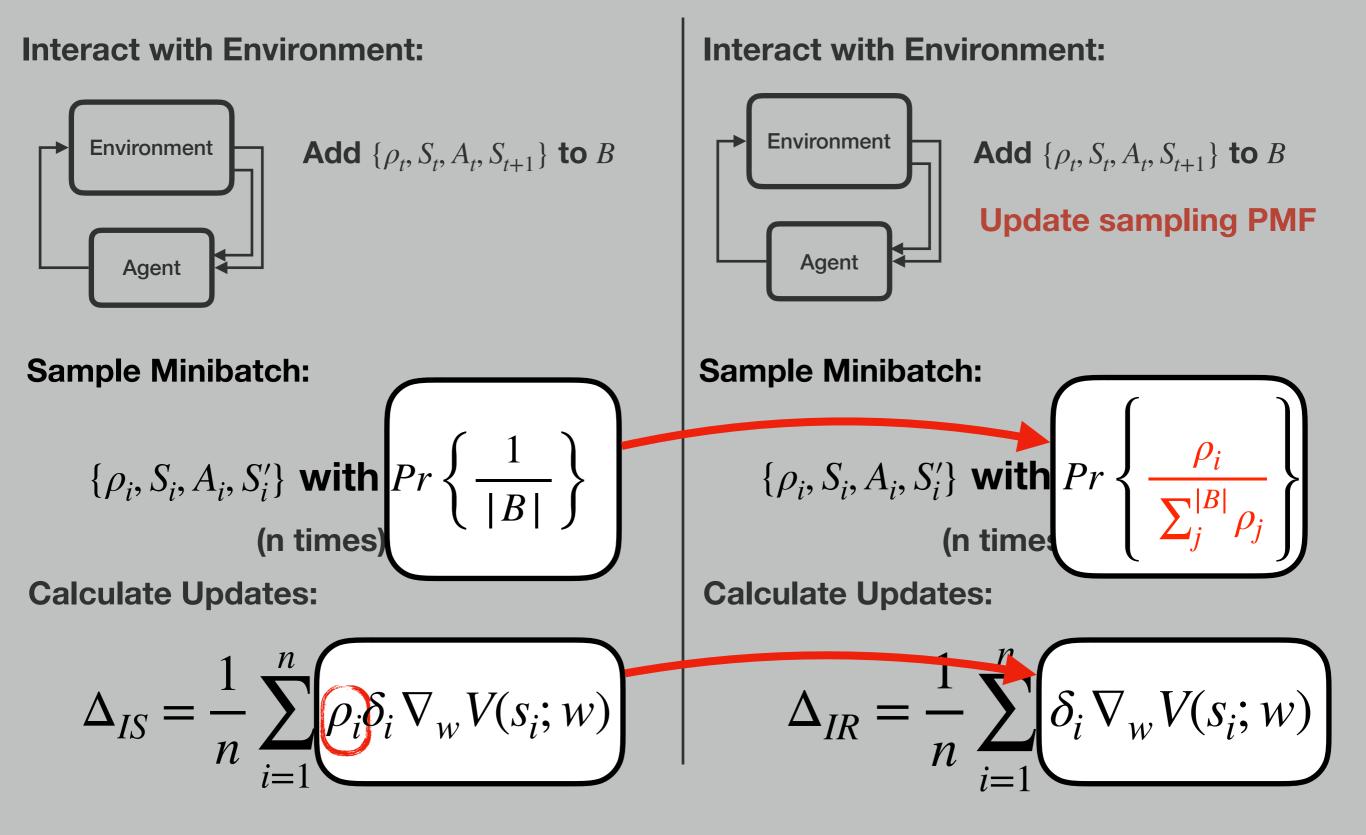
Give an overview of our conclusions from exploring resampling for off-policy prediction.

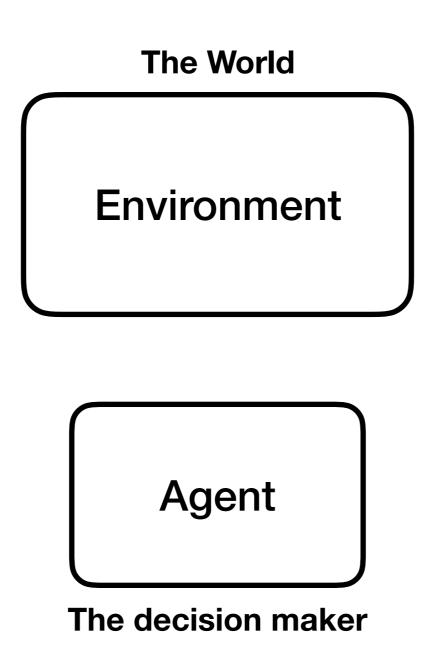
Outline

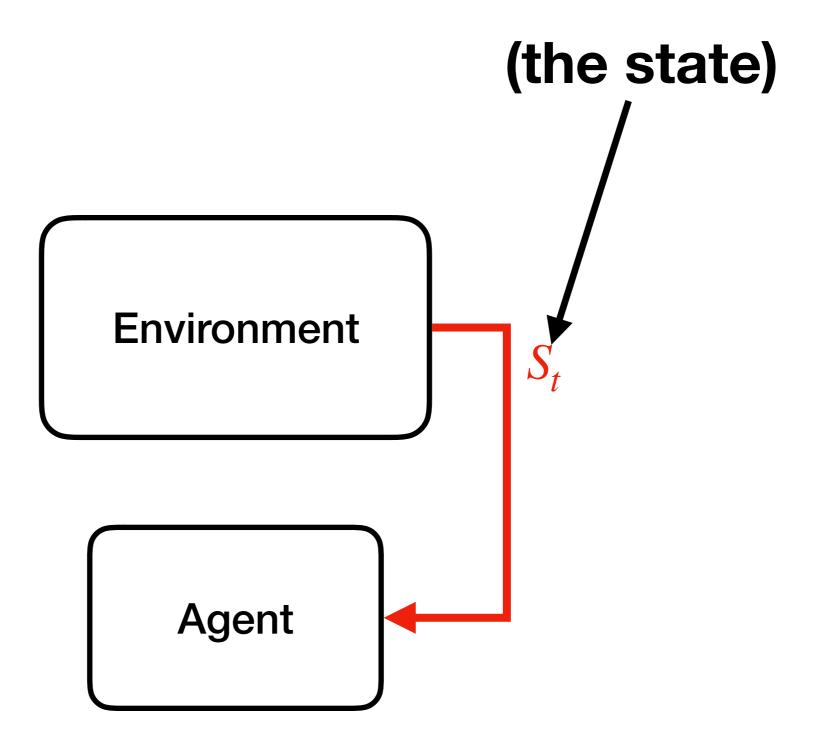
- Background
- Reweighting Vs Resampling
- Empirical Results
- Conclusions
- Future directions and perspectives

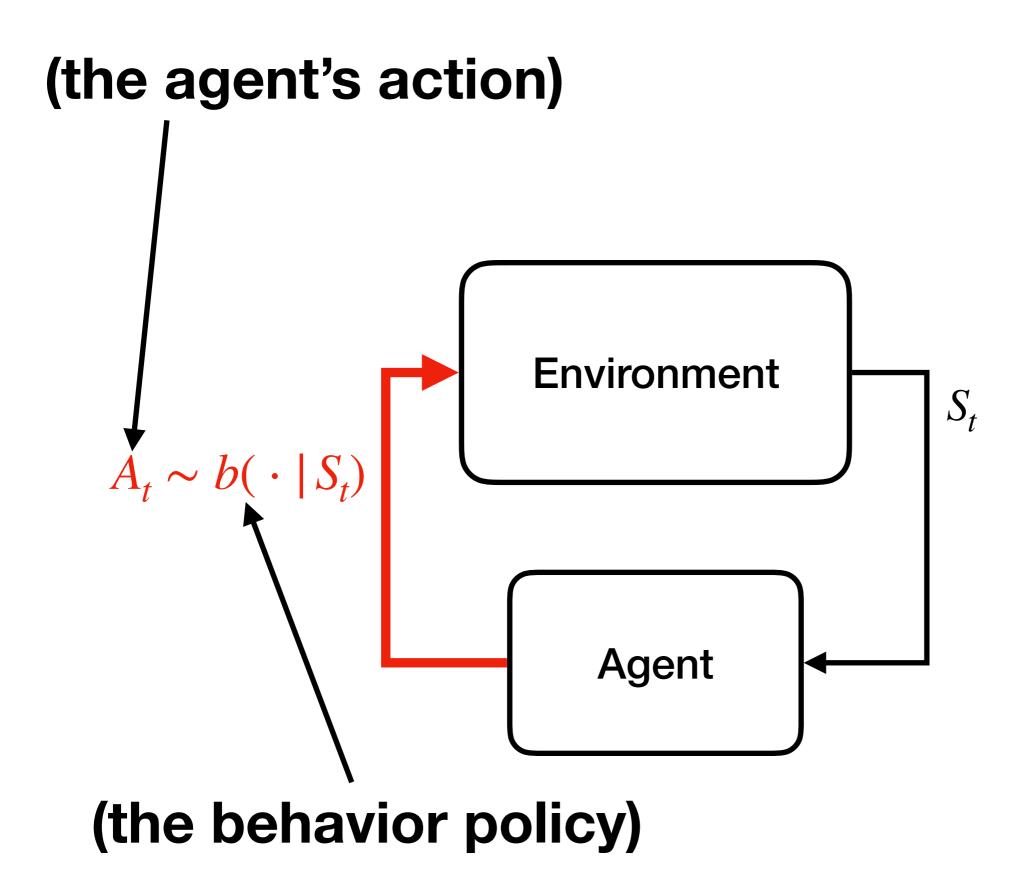
Reweighting

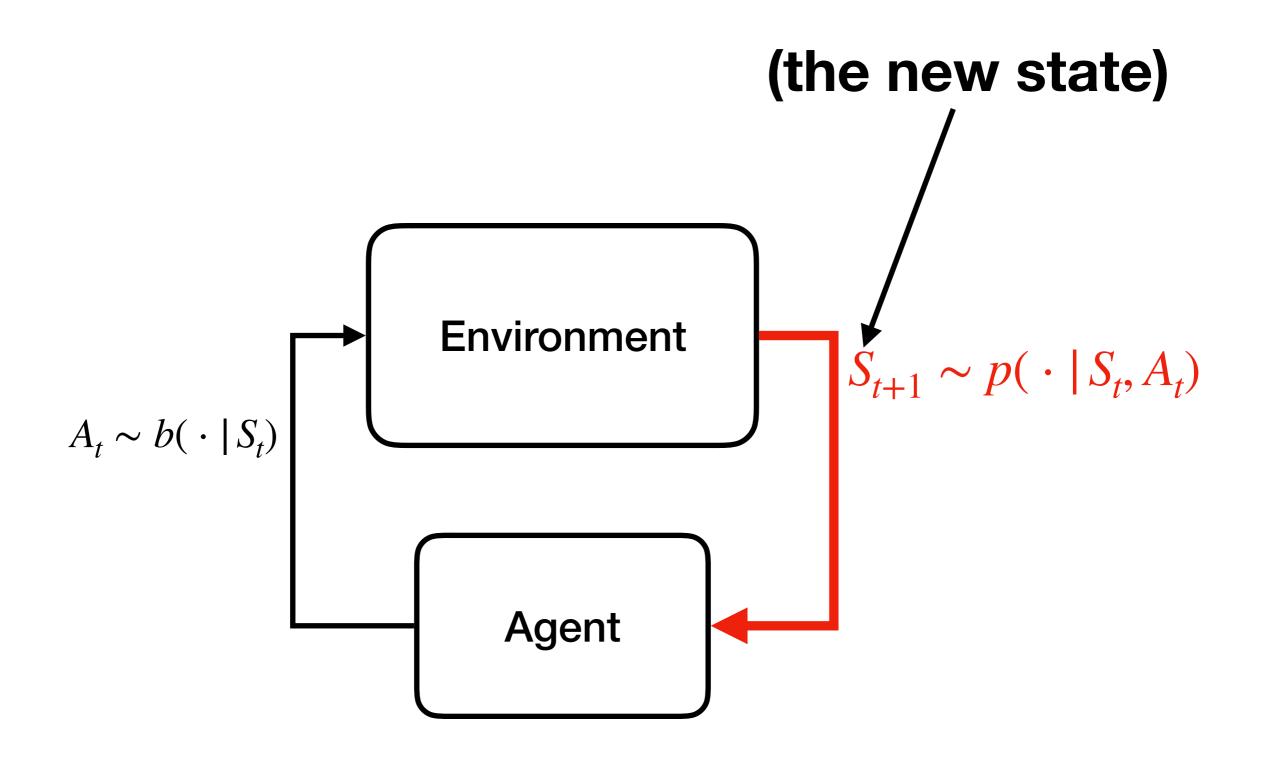
Resampling

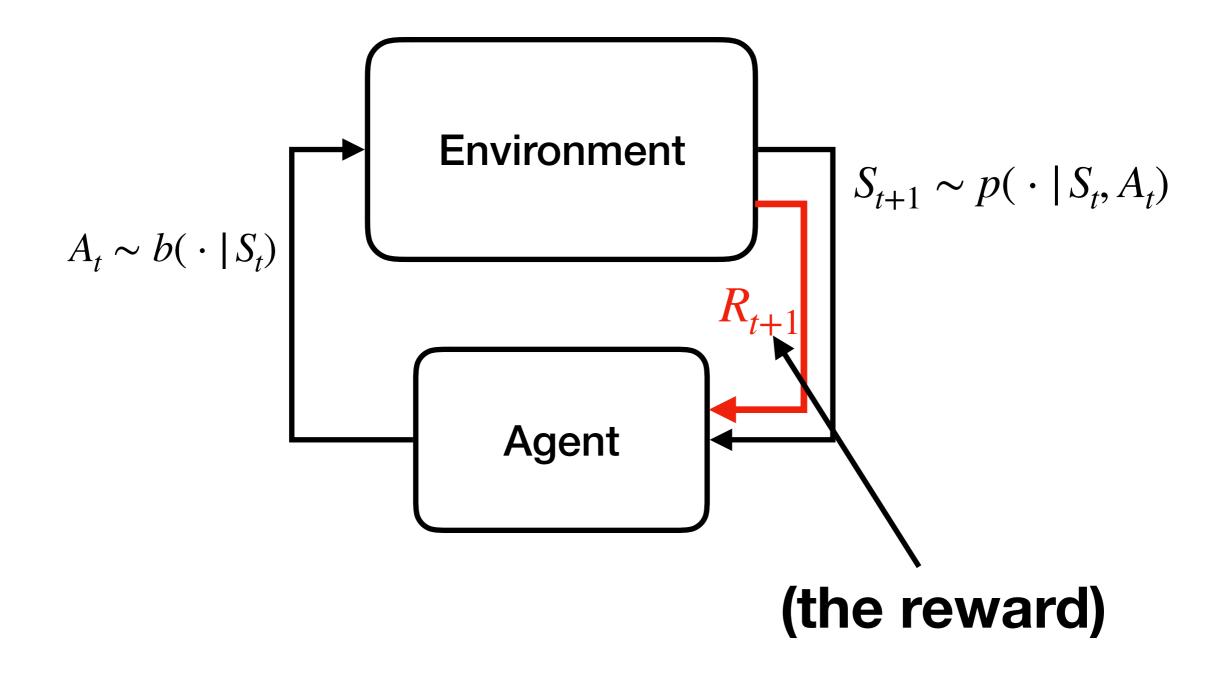




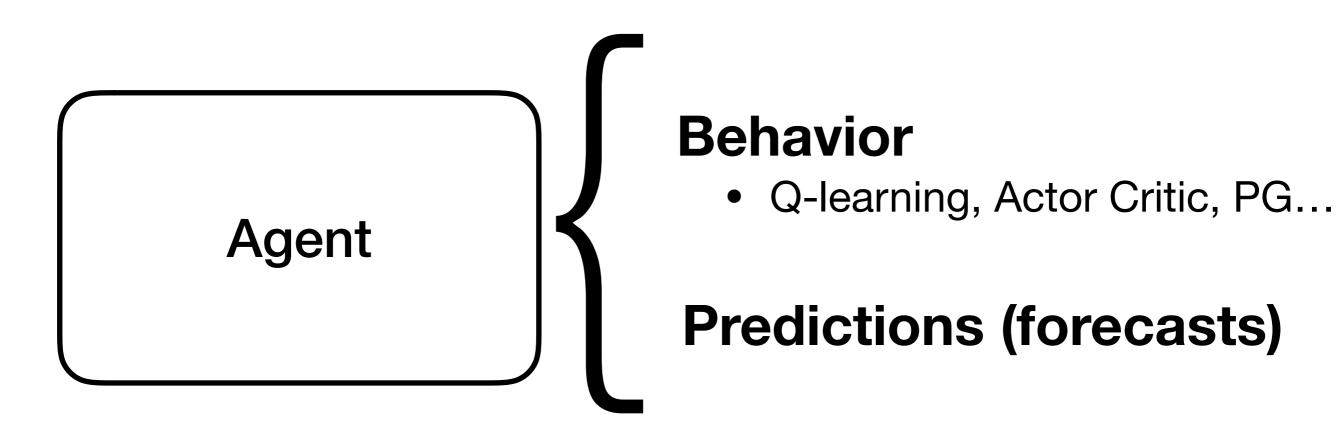




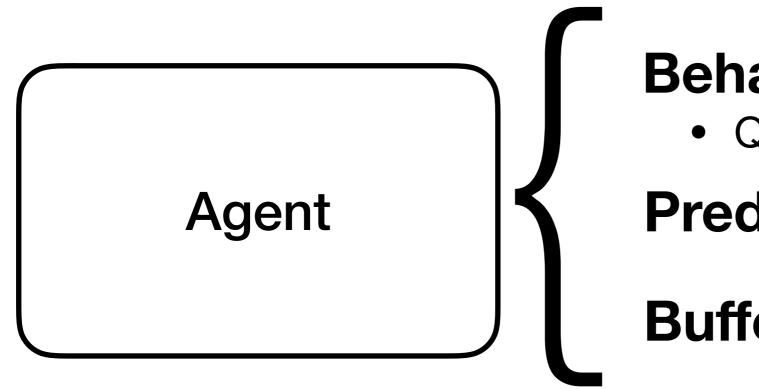




The Agent



The Agent



Behavior

• Q-learning, Actor Critic, PG...

Predictions (forecasts)

Buffer of Experience, B

Value Function

$$v(S_t) = \mathbb{E}_{\pi} \left[\sum_{j=t}^{\infty} \left(\prod_{i=t+1}^{h} \gamma(S_i) \right) R_{j+1} \right]$$

Expected Discounted Return

General Value Function

$$v(S_t) = \mathbb{E}_{\pi} \left[\sum_{j=t}^{\infty} \left(\prod_{i=t+1}^{h} \gamma(S_i) \right) \mathcal{R}_{j+1} \right]$$

Cumulant

Any real-valued signal

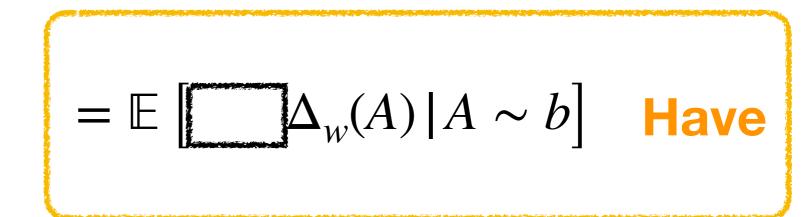
General Value Function

$$v(S_t) = \mathbb{E}_{\overline{\pi}} \left[\sum_{j=t}^{\infty} \left(\prod_{i=t+1}^h \gamma(S_i) \right) C_{j+1} \right]$$

Target Policy $A_{t:\infty} \sim \pi$

Learn about a target policy π using data generated from a behavior policy b .

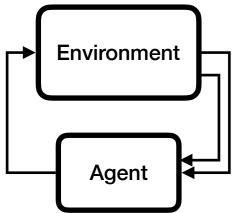
Want $\mathbb{E}\left[\Delta_{w}(A) \mid A \sim \pi\right]$



$$\mathbb{E}\left[\Delta_{w}(A) | A \sim \pi\right] = \sum_{a \in \mathscr{A}} \pi(a) \Delta_{w}(a)$$
$$= \sum_{a \in \mathscr{A}} \pi(a) \frac{b(a)}{b(a)} \Delta_{w}(a)$$
$$= \sum_{a \in \mathscr{A}} \frac{\pi(a)}{b(a)} b(a) \Delta_{w}(a)$$
$$= \mathbb{E}\left[\Box \Delta_{w}(A) | A \sim b\right]$$

Reweighting

Interact with Environment:



Add $\{\rho_t, S_t, A_t, S_{t+1}\}$ to B

Sample Minibatch:

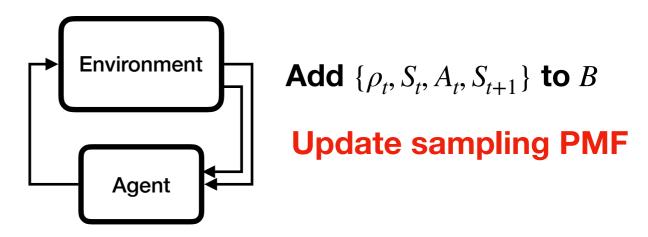
Sample transition $\{\rho_i, S_i, A_i, S_i'\}$ with $Pr\left\{\frac{1}{|B|}\right\}$ (n times)

Calculate Updates:

$$\Delta_{IS} = \frac{1}{n} \sum_{i=1}^{n} \rho_i \delta_i \nabla_w V(s_i; w)$$

Resampling

Interact with Environment:



(n times)

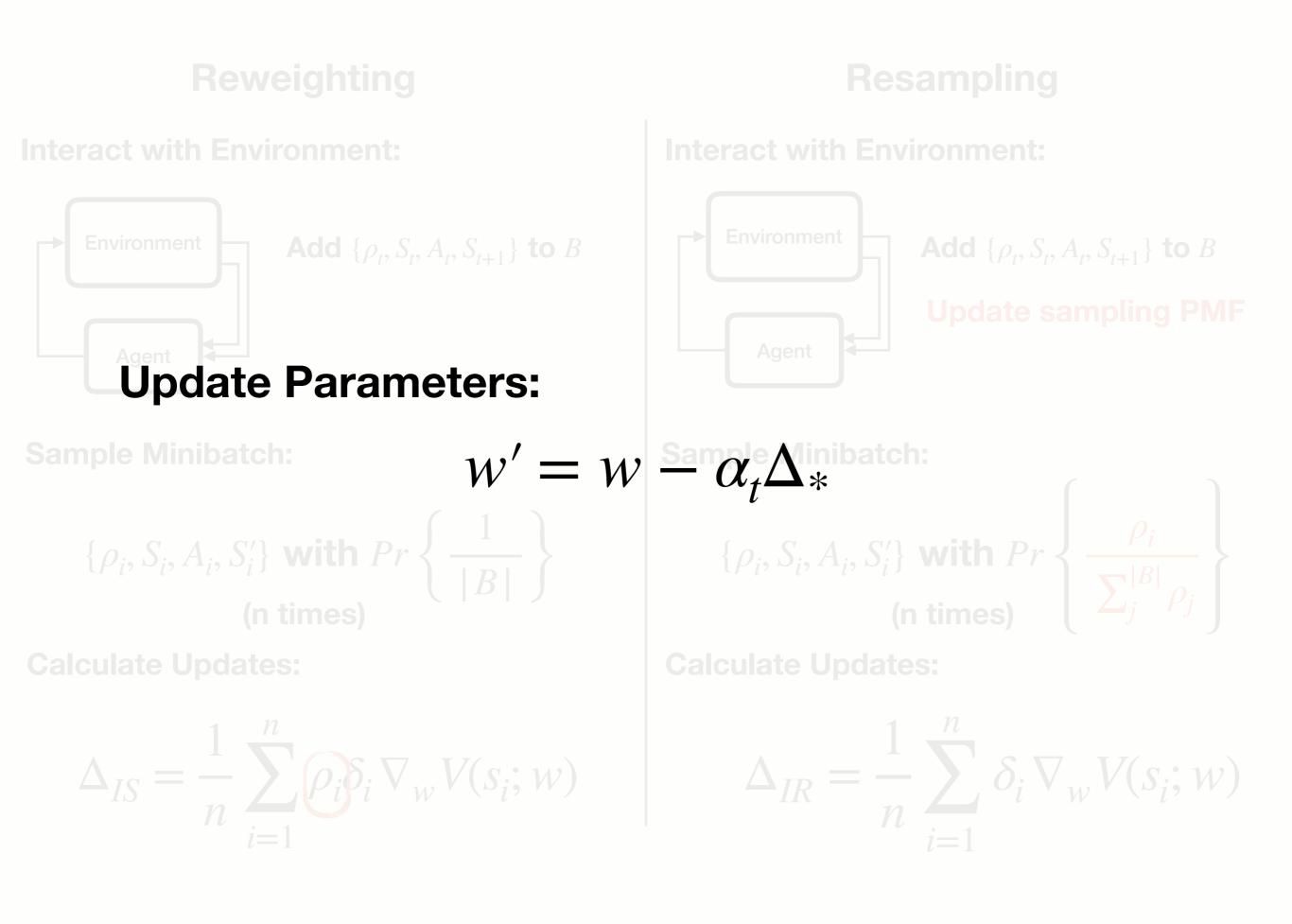
Sample Minibatch:

Sample transition $\{\rho_i, S_i, A_i, S_i'\}$ with $Pr \prec$

$$\left\{\frac{\rho_i}{\sum_{j}^{|B|}\rho_j}\right\}$$

Calculate Updates:

$$\Delta_{IR} = \frac{1}{n} \sum_{i=1}^{n} \delta_i \nabla_w V(s_i; w)$$



With a buffer of experience

Importance Sampling (IS):

Importance Resampling (IR):

$$\Delta_{IS} = \frac{1}{n} \sum_{i=1}^{n} \rho_i \delta_i \nabla_w V(s_i; w)$$

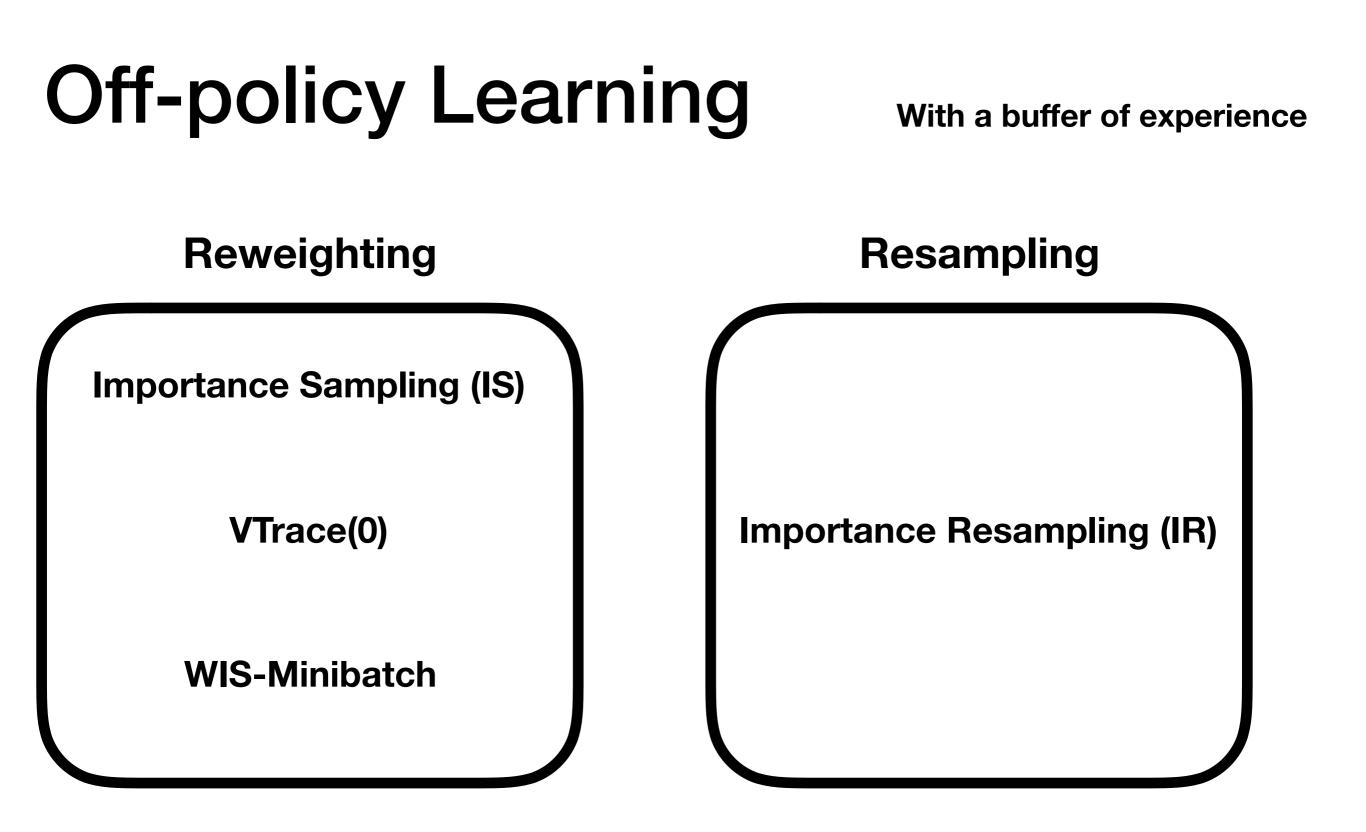
$$\Delta_{IR} = \frac{1}{n} \sum_{i=1}^{n} \delta_i \nabla_w V(s_i; w)$$

WIS-Minibatch:

VTrace(0):

$$\Delta_{WIS} = \frac{1}{\sum_{j=1}^{n} \rho_j} \sum_{i=1}^{n} \rho_i \delta_i \nabla_w V(s_i; w)$$

$$\bar{\rho}_{i} = \begin{cases} \rho_{clip} & \rho_{i} > \rho_{clip} \\ \rho_{t} & \textbf{O.W.} \end{cases}$$
$$\Delta_{VTrace} = \frac{1}{n} \sum_{i=1}^{n} \bar{\rho}_{i} \delta_{i} \nabla_{w} V(s_{i}; w)$$



Hypothesized Empirical Benefits

• IR reduces the **update variance** as compared with IS.

• IR can update less to learn more (sample efficiency).

Variance in Off-policy Prediction

Update Variance:

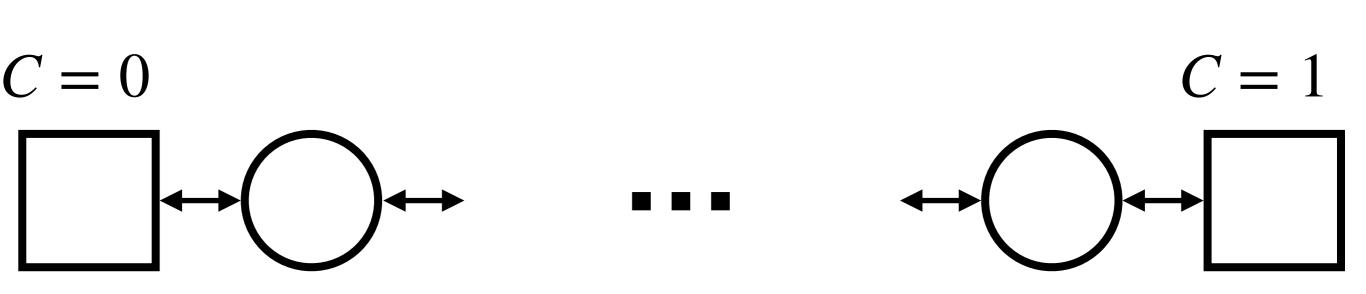
$$Var\left\{\Delta_{IS}\right\} = Var\left\{\left\|\frac{1}{n}\sum_{i=1}^{n}\rho_{i}\delta_{i}\nabla_{w}V(s_{i};w)\right\|_{1}\right\}$$

Benefits of reduced update variance:

- Reduced sensitivity to learning rate.
- Faster learning

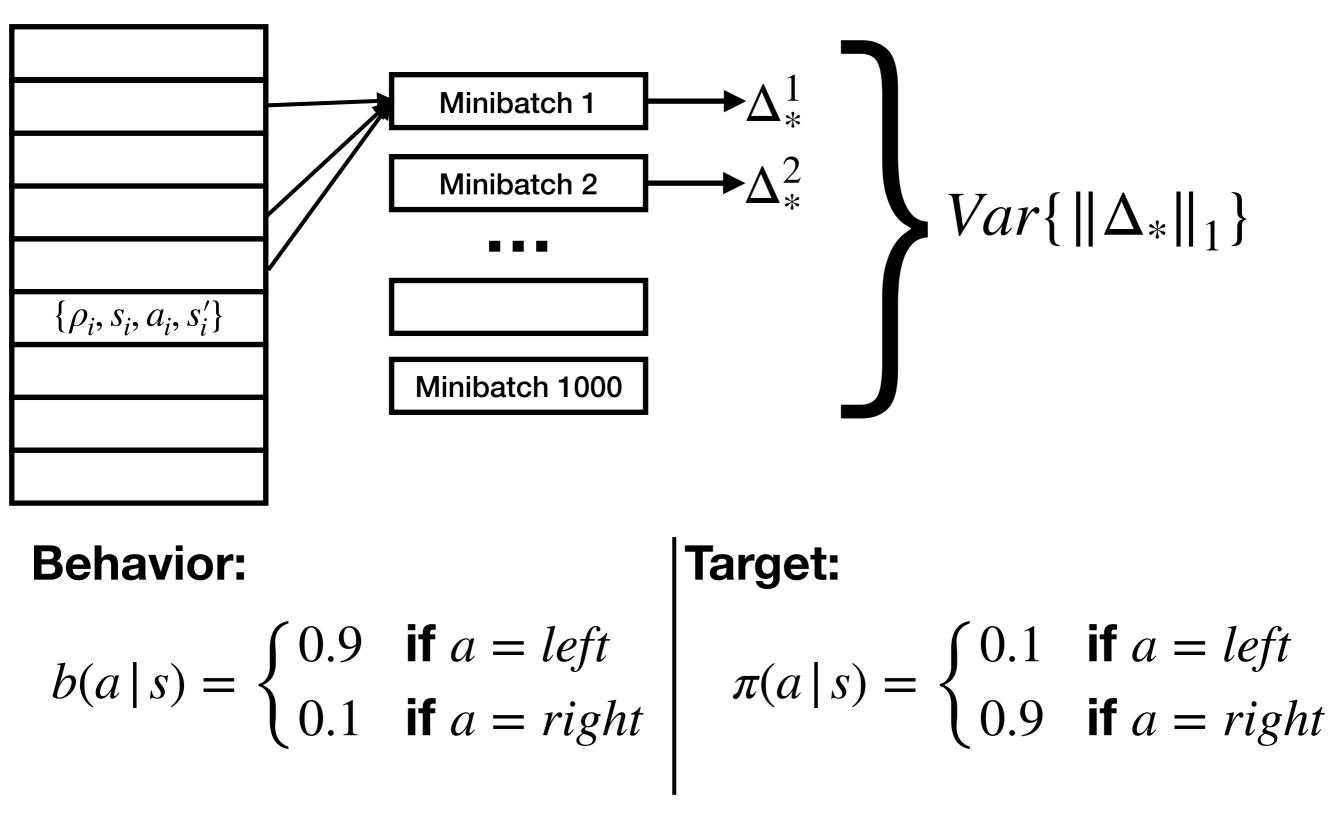
Empirical Results

Markov Chain

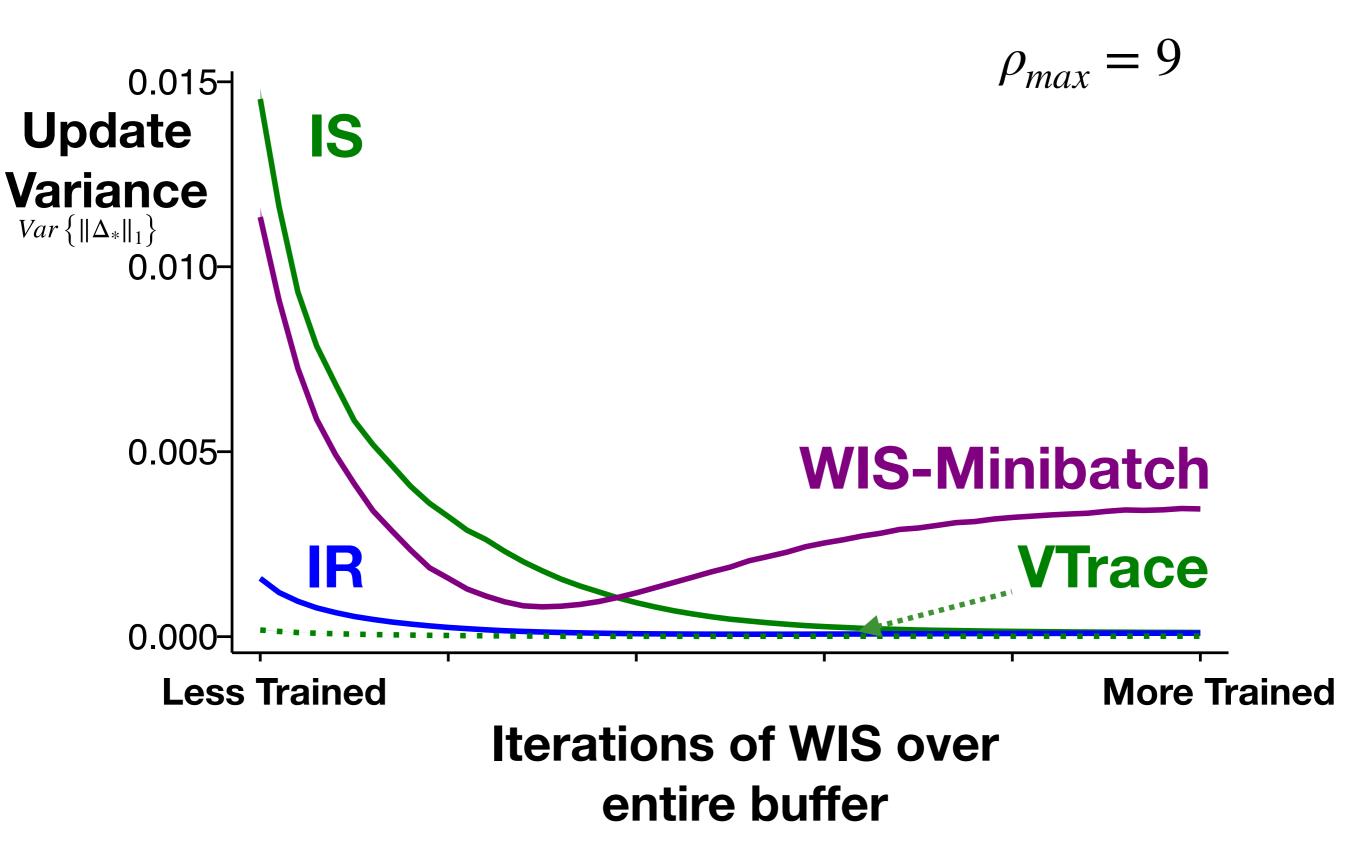


Markov Chain

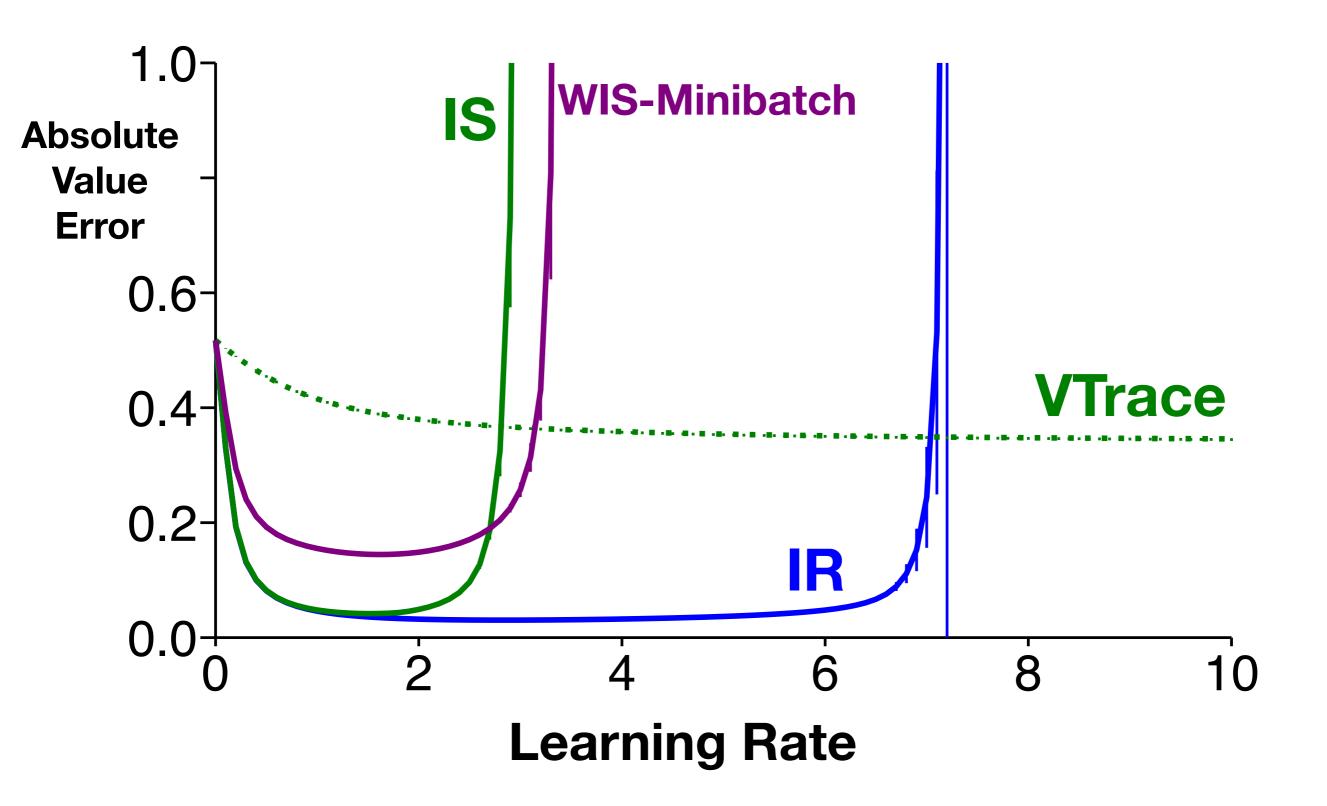
Estimating the Update Variance:



Markov Chain - Update Variance

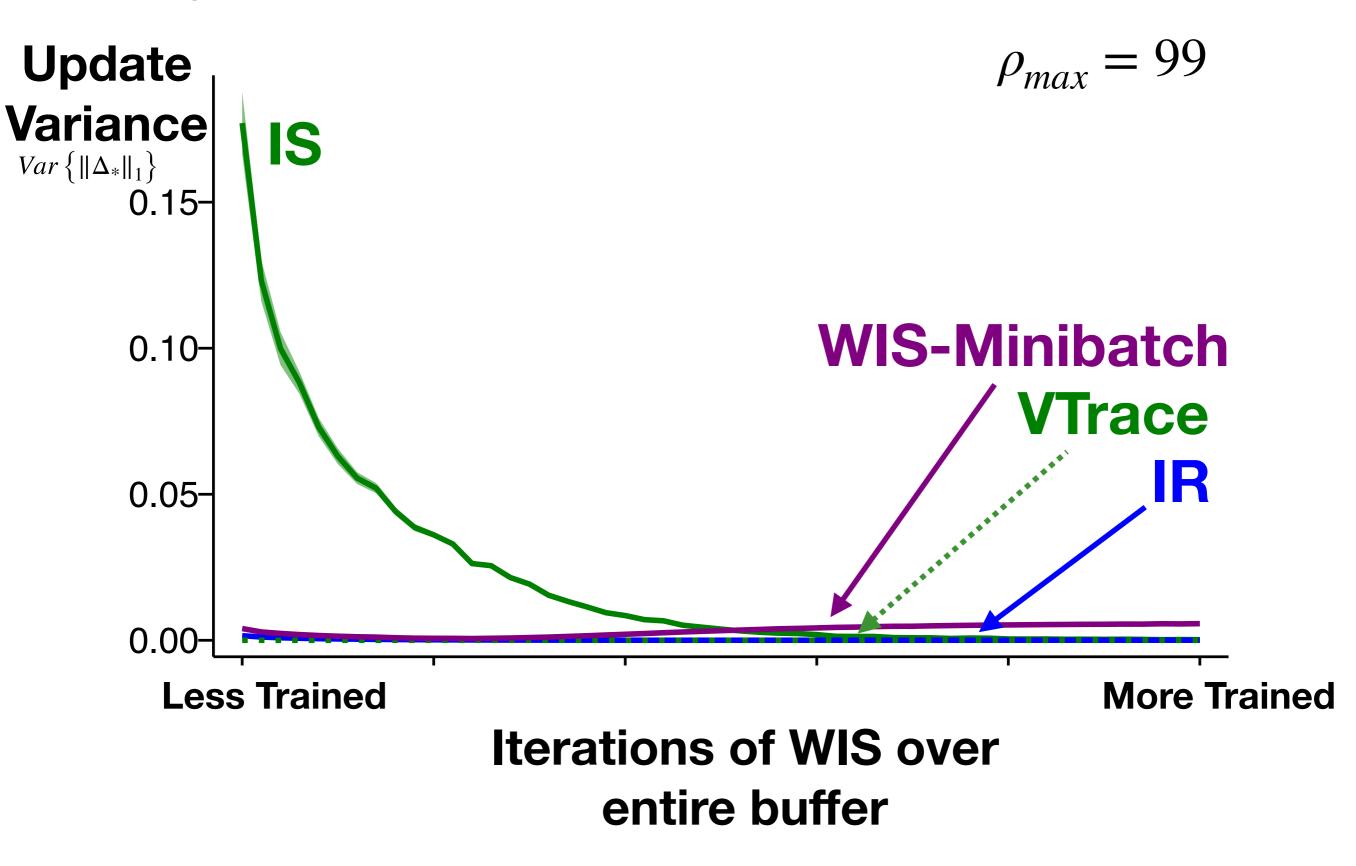


Markov Chain - Learning Rate Sensitivity

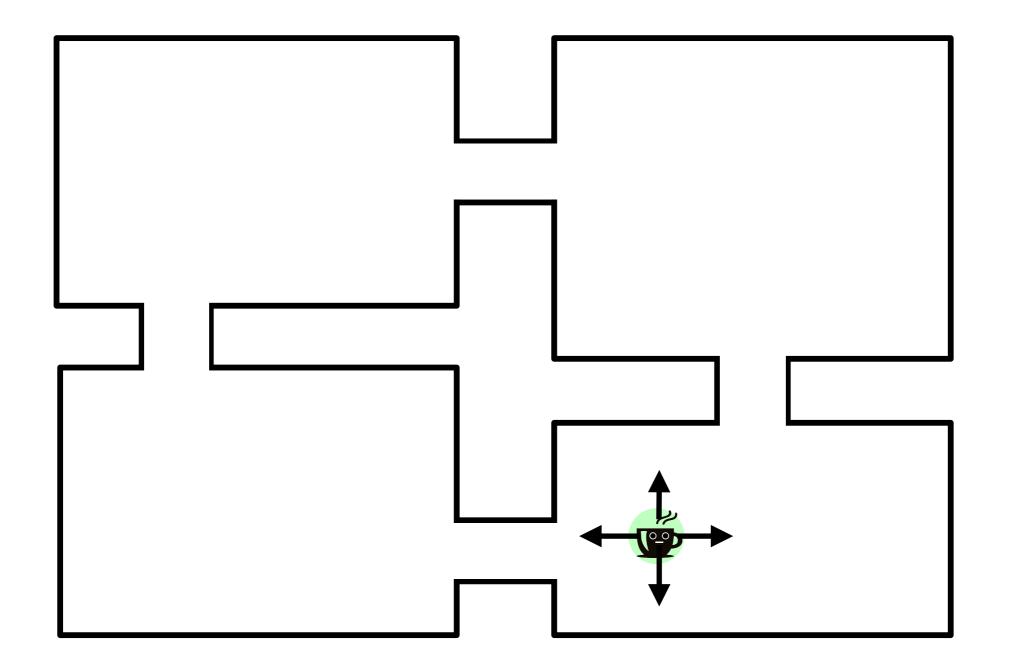


Markov Chain - Update Variance

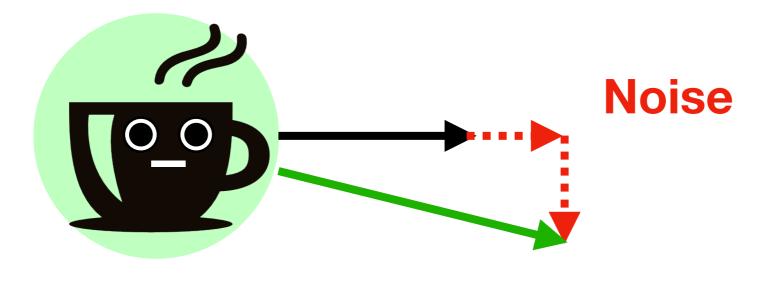
High Variance



Continuous Four Rooms



Continuous Four Rooms

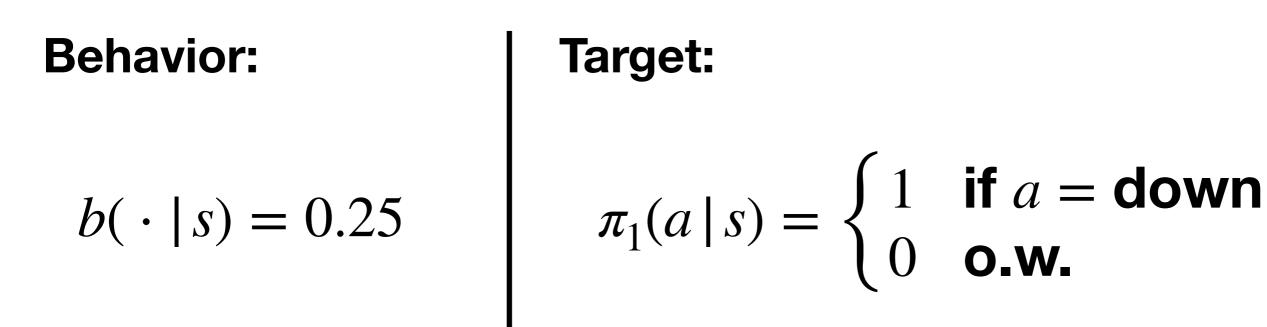


Actual movement

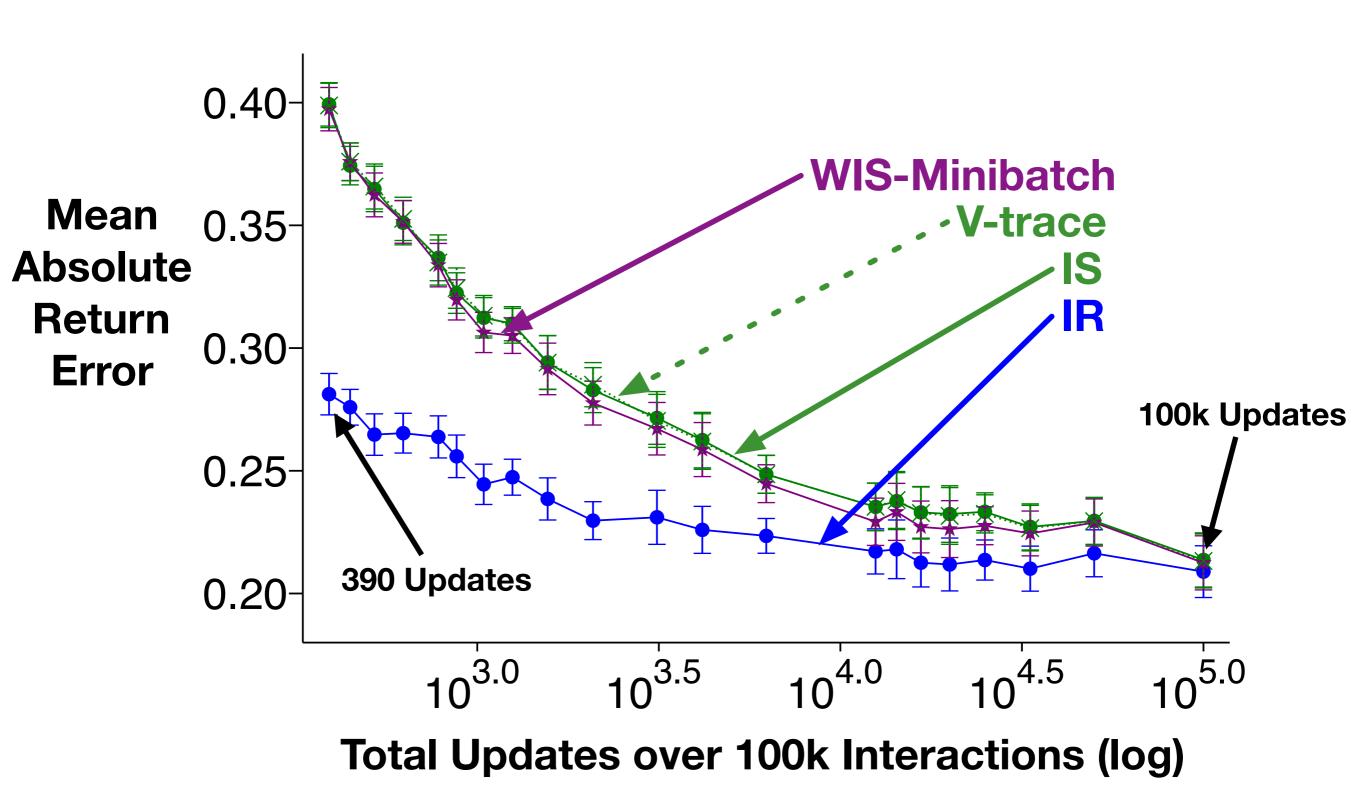
Continuous Four Rooms

Evaluation:

- Sampled 1000 states from the stationary distribution of the behavior policy
- Estimated returns with 100 Monte Carlo rollouts



Cont. Four Rooms - Total Updates



Conclusions

1. Resampling can have **lower variant updates** as compared to importance sampling.

2. Resampling generally needs fewer updates to reach comparable performance to importance sampling.

3. Resampling and importance sampling **perform comparably when many samples are used.**

Buffer of experience

Should we update all predictions at every interaction?

Do we have to update all predictions at every interaction?

Maybe not?

Questions?

More Experiments!

Weird behavior of induced bias!!

Theory!

https://arxiv.org/pdf/1906.04328.pdf

