
Finite-Horizon 
Temporal Difference Methods

KRIS DE ASIS



Reinforcement learning



Policies



Returns and value functions

Return:

𝐺𝑡 ≝ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯

Value functions:

𝑣𝜋 𝑠 ≝ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 ≝ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎



TD learning

Approximate value function:
𝑉 ≈ 𝑣𝜋



TD learning

Approximate value function:
𝑉 ≈ 𝑣𝜋

TD target:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1

TD update:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉 𝑆𝑡

Can be applied to any signal 
of interest to learn GVFs

Value function update target 
depends on itself- can learn 
independent of span



Finite-horizon returns

𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + 𝑅𝑡+4 + 𝑅𝑡+5 + 𝑅𝑡+6 + 𝑅𝑡+7 + 𝑅𝑡+8 + ⋯

A case of time-dependent discounting

Episodic problems can produce finite-horizon returns, but:

• The horizon depends on the environment

• Can still be infinite if a policy avoids terminal states



Finite-horizon returns

Finite-horizon return:

𝐺𝑡
ℎ ≝ 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑡+ℎ = 

𝑘=1

min ℎ,𝑇−𝑡 −1

𝑅𝑡+𝑘+1

Value functions:

𝑣𝜋
ℎ 𝑠 ≝ 𝔼𝜋 𝐺𝑡

ℎ|𝑆𝑡 = 𝑠

𝑞𝜋
ℎ 𝑠, 𝑎 ≝ 𝔼𝜋 𝐺𝑡

ℎ|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎



One-step finite-horizon TD (FHTD)

Approximate value function:
Vℎ ≈ 𝑣𝜋

ℎ



One-step finite-horizon TD (FHTD)

Approximate value functions- for each ℎ ∈ {1, 2, 3, … 𝐻}:
Vℎ ≈ 𝑣𝜋

ℎ

TD targets- for each ℎ ∈ {1, 2, 3, … 𝐻}:
𝐺𝑡

ℎ = 𝑅𝑡+1 + 𝑉ℎ−1 𝑆𝑡+1

TD updates- for each ℎ ∈ {1, 2, 3, … 𝐻}:

𝑉ℎ 𝑆𝑡 ← 𝑉ℎ 𝑆𝑡 + 𝛼 𝐺𝑡
ℎ − 𝑉ℎ 𝑆𝑡

𝑉0 𝑠 = 0 ∀𝑠



Sutton (1988)



van Seijen (-2 days)



Step-functions and filters of the return

Can subtract step functions to get an impulse at a particular time 
step- can extract the expected reward for any future time step.

Finite Horizon Constant 𝛾



Step-functions and filters of the return

If interpreted as a filter, geometric weights have a non-linear phase 
response, distorting the underlying signal

Finite Horizon Constant 𝛾



Compositional GVFs

A simple case of compositional GVFs

A clear, interpretable example of specifying a question that can 
leverage what was already learned:

• If we already learned what happens in 8 steps, we could specify a 
question about what happens in 9 steps, and not start from scratch



Suboptimal control

Trying to maximize over a fixed, shorter horizon won’t be optimal

However, optimality isn’t guaranteed anyways when values are only 
approximated (i.e. function approximation, constant step sizes)

Can continually increase the final horizon, leveraging what has 
already been learned, until sufficiently optimal



Unrolling TD



Unrolling TD



Decoupled bootstrapping

𝑉1 learns the immediate reward, a stable (Monte Carlo) target

After 𝑉1 converges, 𝑉2 will have a stable target and eventually 
converge, then 𝑉3 will have a stable target…

Appears compatible with non-linear function approximation in 
prediction under fixed policies

A way to bootstrap that avoids the deadly triad?



Baird’s counterexample



Baird’s counterexample

Predicted up to 𝐻 =
1

1−𝛾
= 100

𝐰ℎ = 1, 1, 1, 1, 1, 1, 10, 1 𝑇 ∀ℎ ∈ {1, 2, 3, … , 100}

Used finite-horizon dynamic programming:
• Synchronous updating
• Iterative deepening

Also ran one-step FHTD with importance sampling



Baird’s counterexample



Baird’s counterexample



Not independent of span

Have to learn 𝐻 value functions, computation scales linearly with 
the final horizon 𝐻

What about finite-horizon Monte Carlo?

• Stores last 𝐻 rewards, but if you only care about the final horizon…
• Only has to update one value function!



n-step TD to the Rescue

1-step TD target:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1

2-step TD target:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑉 𝑆𝑡+2

3-step TD target:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑉 𝑆𝑡+3



n-step TD to the Rescue

1-step FHTD target:
𝐺𝑡

ℎ = 𝑅𝑡+1 + 𝑉ℎ−1 𝑆𝑡+1

2-step FHTD target:
𝐺𝑡

ℎ = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑉ℎ−2 𝑆𝑡+2

3-step FHTD target:
𝐺𝑡

ℎ = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + 𝑉ℎ−3 𝑆𝑡+3

Skips value functions-

only have to learn 
𝐻

𝑛

of them!



Sub-linear in Span

Has to add 𝑛 rewards, and update 
𝐻

𝑛
value functions. Computation 

scales with:

𝑛 − 1 +
𝐻

𝑛

Worst case: 𝐻 operations at 𝑛 = 1 (one-step) and 𝑛 = 𝐻 (MC)

Best case: 2 𝐻 − 1 operations at 𝑛 = 𝐻



Sub-linear in Span

Example: 10-step FHTD to predict 𝑉100:

• Store and sum last 10 rewards (Denoted Σ𝑅)
• Estimate 10 value functions 𝑉10, 𝑉20, 𝑉30, … , 𝑉100

𝑉10 ≈ Σ𝑅 + 𝑉0

𝑉20 ≈ Σ𝑅 + 𝑉10

⋮
𝑉100 ≈ Σ𝑅 + 𝑉90



FHTD Control?

Trivial to extend multi-step FHTD for learning action-values in 
prediction, less trivial for control

Each horizon has to be greedy with respect to themselves

The greedy action of one horizon can differ from the greedy action 
of another horizon- FHTD control is inherently off-policy



FHTD Control?

The savings from n-step may not be possible without 
approximations- need to know what the greedy action is for each 
horizon, so we can’t skip over learning them 

The optimal policy of a horizon is unaffected by policy improvement 
of later horizons- can leverage previously learned policies! ☺



One-step finite-horizon Q-learning

Approximate value functions- for each ℎ ∈ {1, 2, 3, … 𝐻}:
𝑄ℎ ≈ 𝑞∗

ℎ

TD targets- for each ℎ ∈ {1, 2, 3, … 𝐻}:
𝐺𝑡

ℎ = 𝑅𝑡+1 + max
𝑎′

𝑄ℎ−1 𝑆𝑡+1, 𝑎′

TD updates- for each ℎ ∈ {1, 2, 3, … 𝐻}:

𝑄ℎ 𝑆𝑡 , 𝐴𝑡 ← 𝑄ℎ 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝐺𝑡
ℎ − 𝑄ℎ 𝑆𝑡 , 𝐴𝑡

𝑄0 𝑠, 𝑎 = 0 ∀𝑠, 𝑎



FHTD control

Slippery maze:
• Episodic grid world
• 4-directional movement, 75% 

chance action gets overridden with 
random action

• Reward of -1 at each step



FHTD control

FHQ-learning:
• Behaved 𝜖-greedy w.r.t. 𝑄𝐻 (𝜖 = 0.1)
• Compared 𝐻 ∈ 8, 16, 32, 48

Q-learning:
• 𝜖-greedy w.r.t. 𝑄 (𝜖 = 0.1)

• Compared 𝛾 = 1 −
1

𝐻



FHTD control



Deep n-step FHQ (n = 5, H=100)

• Lunar Lander environment
• Fully connected, one hidden layer
• Horizons treated as heads over a 

shared representation



Deep n-step FHQ (n = 5, H=100)

• No momentum
• No target network
• No experience replay

• Will probably still improve 
with the above



Summary

Might be useful to only considering a shorter, finite-horizon:
• Stable update targets
• Can get exact notion of what happens and when
• Clear example of compositional GVFs
• Empirical benefits

No longer independent of span, but can reduce computation in 
prediction with n-step methods



New horizons to pursue

Better ways to handle unavoidable off-policyness of FHTD control? 
Approximations for reducing computation in control?

Subtracting subsequent horizons allows for extracting expected 
individual rewards- can maybe learn and plan with an automatically 
unrolled model in time?

Online iterative-deepening? Maybe each horizon can have its own 
step size, and use something like TIDBD (Kearney et al., 2018)?



Questions?

KRIS DE ASIS



Results in truncated traces that travel through horizons

Because it’s a mixture of every n-step return, you need to learn all 𝐻
value functions again 

What about TD(𝝀)?

𝐻



Multi-step FHTD prediction

In addition to the computational savings in 𝑛-step FHTD, multi-step 
methods address a bias-variance trade-off by adjusting the reliance 
on estimates being accurate



Multi-step FHTD prediction (H=32)

Used checkered grid world (De Asis et al., 2018)














