When to use parametric models in reinforcement learning?

Hado van Hasselt, DeepMind

Tea-time talk, Montreal, July 11, 2019

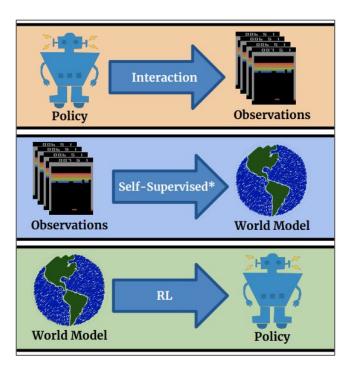
Related paper: https://arxiv.org/abs/1906.05243

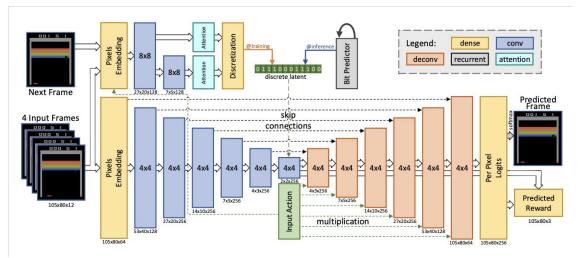
Motivation

Model Based Reinforcement Learning for Atari

Łukasz Kaiser^{*1} Mohammad Babaeizadeh^{*23} Piotr Miłoś^{*45} Błażej Osiński^{*453} Roy H Campbell² Konrad Czechowski⁴ Dumitru Erhan¹ Chelsea Finn¹ Piotr Kozakowski⁴ Sergey Levine¹ Afroz Mohiuddin¹ Ryan Sepassi¹ George Tucker¹ Henryk Michalewski⁴⁵

Motivation

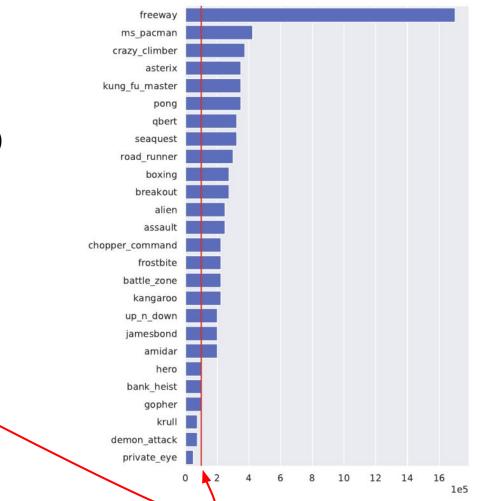




Motivation

Performance (=score) after 100,000 steps (=400,000 frames)

Baseline: Rainbow DQN



Question

Why does the parametric model perform better than replay?

Models and planning

A **model** is a function:

 $\mathbf{r}, \mathbf{s}' = \mathbf{m}(\mathbf{s}, \mathbf{a})$

We can use models to **plan**: spend more compute to improve prediction & policies.

We can also plan with **experience replay**:

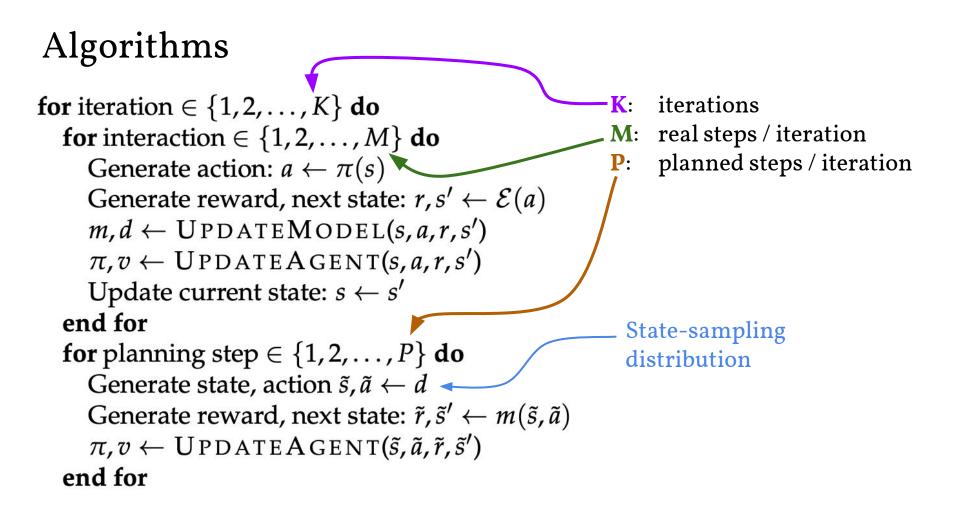
$$r_{n+1}, s_{n+1} = replay(s_n, a_n)$$

- Experience replay is similar to a non-parametric model
- But we can only query it at observed state action pairs (s_n, a_n), n < t.

Replay and models, properties

Typically models use **less memory** and **more compute** than replay

But what about data efficiency & performance?



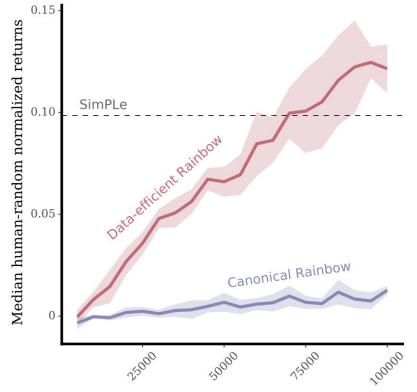
Algorithms

	Iterations (K)	Real steps per iteration (M)	Planned steps per iteration (P)
SimPLe	16	6400	800,000
Rainbow DQN	12,500,000	4	32
Data-efficient Rainbow DQN	100,000	I	32

Algorithms

	Total real experience (<mark>K</mark> x M)	Total planned experience (K x P)
SimPLe	100,000 (400K frames)	15,200,000
Rainbow DQN	50,000,000 (200M frames)	400,000,000
Data-efficient Rainbow DQN	100,000 (400K frames)	3,200,000

Algorithms

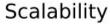


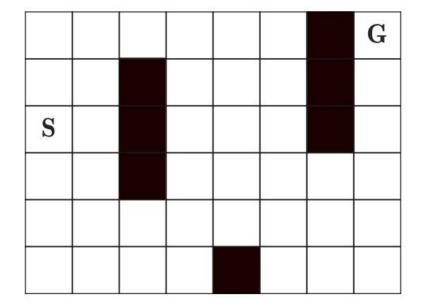
Agent-environment interactions

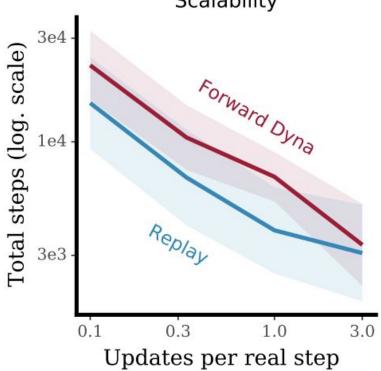
When do models help performance?

Forward planning for credit assignment

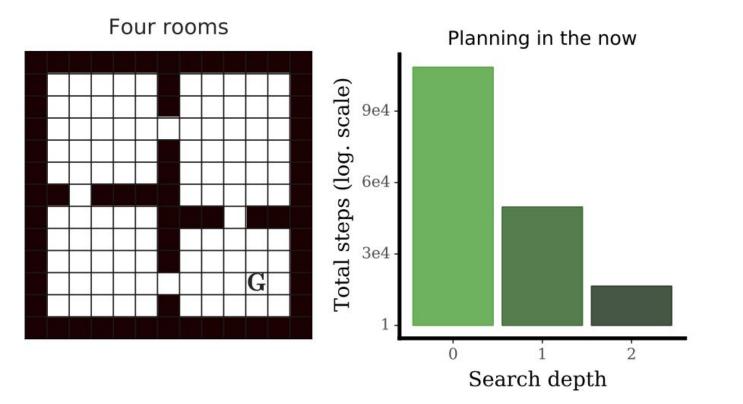
The maze



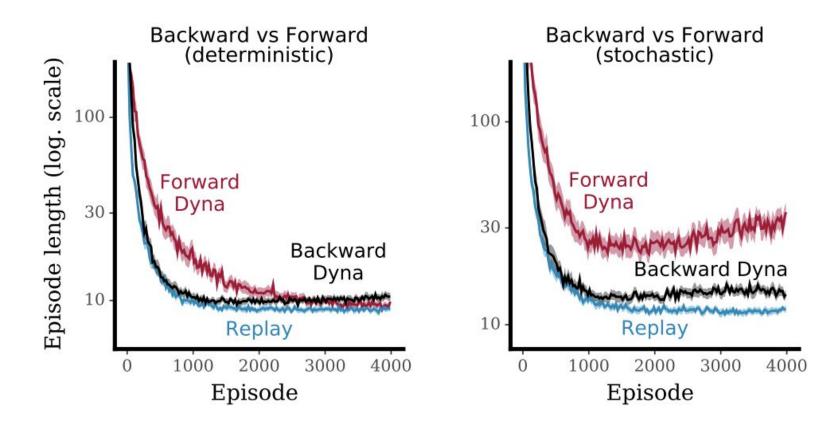




Forward planning for behaviour



Backward planning for credit assignment



Conclusions

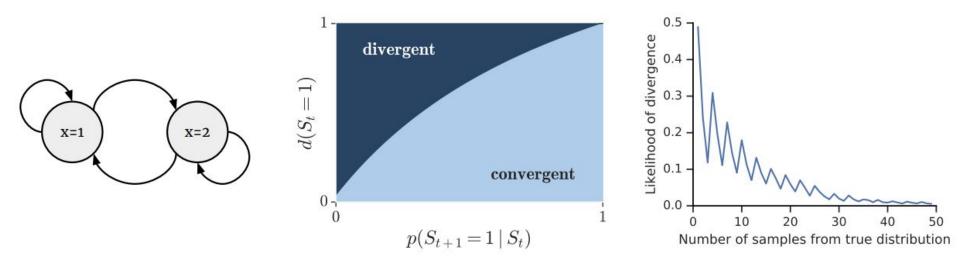
b.

- I. Replay can be used for planning
- 2. There are different ways to use models:
 - a. Forward planning for credit assignment
 - **Forward** planning for **immediate behaviour**
 - c. Backward planning for credit assignment

Thank you

More details: https://arxiv.org/abs/1906.05243

Bonus slide: Surprising instabilities



- Even with **perfect models** learning can be unstable
- This happens surprisingly easily!
- Related to the *deadly triad*:
 - the state sampling distribution d and the model m may mismatch, even if m = p is perfect.

Bonus slide: Rainbow DQN hyperparameters changes

Hyper-parameter	canonical	data-efficient
Training frames	200,000,000	400,000
Min replay size for sampling	20,000	1600
Memory size	1,000,000 steps	unbounded
Replay period every	4 steps	1 steps
Multi-step return length	3	20
Q network: channels	32, 64, 64	32,64
Q network: filter size	$8 \times 8, 4 \times 4, 3 \times 3$	5 × 5, 5 × 5
Q network: stride	4, 2, 1	5,5
Q network: hidden units	512	256
Optimizer: learning rate	0.0000625	0.0001