POLITEX: Policy Iteration using Expert Prediction

Nevena Lazic, Yasin-Abbasi Yadkori, Kush Bhatia, Peter Bartlett, Gellert Weisz, Csaba Szepesvari

http://proceedings.mlr.press/v97/lazic19a/lazic19a.pdf

Goal

RL algorithm

- Model-free
- Maximize (undiscounted!) total reward during learning

Environment

- Finite action MDP
- Online access

Value function approximator

Want

Have

 Q-values approximated well from on-policy data

The Politex algorithm

"Meta" theoretical result

Theorem

Assume that for any policy π , after following π for n steps, the black-box produces an action-value function whose error is $\epsilon + 1/\sqrt{n}$ up to some universal constant.

Then the average regret¹ of Politex after T steps is $\epsilon + T^{-\frac{3}{4}}$.

¹Regret=Loss relative to a reference policy (eg. optimal)

Can the assumption be met?

Learn Qpi

- How to build that black-box?
- LSPE (Nedic-Bertsekas, Yu-Bertsekas) for action-value functions, batchversion
- Linear value function approximation:
 - $\hat{Q}_{\pi} = \Psi w_{\pi}$
- Solve the "empirical" version of

 $\Psi w = \Pi_{\pi} (c - \lambda \mathbb{I} + H \Psi w)$

- Linear independence: Columns of
 [Ψ I] are linearly independent.
- **Feature excitation**: For any π ,

 $\lambda_{\min}(\Psi^{\mathsf{T}}\operatorname{diag}(\nu_{\pi})\Psi) \geq \sigma > 0.$

But why this algorithm???

Implementation with neural networks

- Easy to keep average Q with linear function approximation without overhead
- Tricky with Neural Networks!
- Approximate solution:
 - Circular buffer of past networks
 - Saved periodically
 - Constant factor memory overhead
 - Prediction time: **constant** factor **overhead**
 - Training time: **no overhead**

Results on Atari vs DQN

- ACME DQN with TD-weighted replay, few actor steps
- For POLITEX: short uniform replay buffer

Ms Pacman

Results on queuing problems

Relaxing the assumptions

Exploration-enhanced Politex

Experimental results: Ms Pac-Man

Experimental results: DeepSea

Experimental results: DeepSea

Swingup

Summary & future work

- First algorithm guaranteed to work in non-realizable VFA setting
 - Theoretical guarantees, also seems to works in practice!
- Adaptive learning rate/optimistic mirror descent to reduce regret
- Same family as MPO/PPO \rightarrow why KL regularization?
 - But: Represent policy instead of Q values
 - And: Tunes learning rate differently with KL.
- Future:
 - Find good pure exploration policies, continuous actions, more experiments.

Related work

- E. Even-Dar, S. M. Kakade, and Y. Mansour. "Online MDPs." Mathematics of Operations Research 34.3 (2009).
- H. Yu and D. P. Bertsekas. "Convergence results for some temporal difference methods based on least squares." IEEE Transactions on Automatic Control 54.7 (2009)
- Ian Osband, Zheng Wen, and Benjamin Van Roy. Generalization and exploration via randomized value functions. ICML, 2016.
- Degrave et al., Quinoa. NeurIPS DeepRL Workshop, 2018.
- Abdolmaleki et al., Maximum a-posteriori policy optimization. ICLR, 2018.
- Y. Abbasi-Yadkori, N. Lazić, and C. Szepesvári. "Regret bounds for modelfree LQ control." AISTATS, 2019.

