
POLITEX: Policy Iteration using 
Expert Prediction

Nevena Lazic, Yasin-Abbasi Yadkori, 
Kush Bhatia, Peter Bartlett, 

Gellert Weisz, Csaba Szepesvari
http://proceedings.mlr.press/v97/lazic19a/lazic19a.pdf



Goal

RL algorithm
● Model-free
● Maximize (undiscounted!) total reward during learning

Environment
● Finite action MDP
● Online access

Value function approximator
● Q-values approximated 

well from on-policy data

Want

Have



The Politex algorithm

1. Set policy to Boltzmann on sum 
of past Q functions

2. Execute policy for some steps
3. Compute new Q function from 

collected data

Loop

Qsum Learn 
Qpi

LEARNER

ACTOR

Boltzmann(
Qsum)

Every 

Ttarget steps

DATA



“Meta” theoretical result

Theorem

Assume that for any policy 𝜋, after following 𝜋 for 𝑛 steps, the black-box 
produces an action-value function whose error is 𝜖 + 1/ 𝑛� up to some 
universal constant.

Then the average regret1 of Politex after 𝑇 steps is 𝜖 + 𝑇)
*
+.

1Regret=Loss relative to a reference policy (eg. optimal)



Can the assumption be met?

● How to build that black-box?
● LSPE (Nedic-Bertsekas, Yu-Bertsekas) for action-value functions, batch-

version

• Linear value function approximation: 

𝑄-. = Ψ𝑤.
• Solve the “empirical” version of

Ψ𝑤 = Π.(𝑐 − 𝜆𝕀 + 𝐻Ψ𝑤)

• Linear independence: Columns of 

[Ψ	𝕀] are linearly independent.

• Feature excitation: For any 𝜋, 

𝜆=>? Ψ@diag 𝜈. Ψ ≥ 𝜎 > 0.

Learn 
Qpi

???



But why this algorithm???

● Policy defines choice of action for each 
state

● => a separate online learning problem 
for each state

Regret minimized:

Solution: Boltzmann policy on sum over past 𝑥
vectors.

Maximise rewards in hindsight

Stay close to previous policy

regret 
relative to 𝜋K.



Implementation with neural networks

● Easy to keep average Q with linear function 

approximation without overhead

● Tricky with Neural Networks!

● Approximate solution:
○ Circular buffer of past networks

○ Saved periodically

○ Constant factor memory overhead

○ Prediction time: constant factor overhead

○ Training time: no overhead



Results on Atari vs DQN

● ACME DQN with TD-weighted 

replay, few actor steps
● For POLITEX: short uniform replay 

buffer

Ms Pacman



Results on queuing problems



Relaxing the assumptions

Environment
● Finite-action MDP

Value function approximator
● Q-values approximated 

well from off-policy data
Have

● Easier to satisfy (broadens scope)

Exploring policy
● Excites features/goes 

“everywhere”



Exploration-enhanced Politex

1. Set policy to Boltzmann on sum 
of past Q functions

2. Iterate:
1. Execute exploring policy for 

some steps
2. Execute current policy for 

some steps
3. Compute new Q function from 

collected data

Loop

Qsum Learn 
Qpi

LEARNER

ACTOR

Boltzmann(
Qsum)

Every 

Ttarget steps

DATA
EE-Politex

𝜋LMN



Experimental results: Ms Pac-Man



Experimental results: DeepSea



Experimental results: DeepSea



Swingup



Summary & future work

● First algorithm guaranteed to work in non-realizable VFA setting
○ Theoretical guarantees, also seems to works in practice!

● Adaptive learning rate/optimistic mirror descent to reduce regret

● Same family as MPO/PPO à why KL regularization?
○ But: Represent policy instead of Q values

○ And: Tunes learning rate differently - with KL.

● Future: 
● Find good pure exploration policies, continuous actions, more experiments.



Related work

● E. Even-Dar, S. M. Kakade, and Y. Mansour. "Online MDPs." Mathematics of 
Operations Research 34.3 (2009). 

● H. Yu and D. P. Bertsekas. "Convergence results for some temporal 
difference methods based on least squares." IEEE Transactions on 
Automatic Control 54.7 (2009) 

● Ian Osband, Zheng Wen, and Benjamin Van Roy. Generalization and 
exploration via randomized value functions. ICML, 2016.

● Degrave et al., Quinoa. NeurIPS DeepRL Workshop, 2018.
● Abdolmaleki et al., Maximum a-posteriori policy optimization. ICLR, 2018.
● Y. Abbasi-Yadkori, N. Lazić, and C. Szepesvári. "Regret bounds for model-

free LQ control." AISTATS, 2019.


