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BATCH OFF-POLICY POLICY OPTIMIZATIONBATCH OFF-POLICY POLICY OPTIMIZATION
Batch of  trajectories of length  generated by behavior policy 

How to best use this experience to learn some other target policy ?
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BATCH OPTIMIZATION WITH EXPECTED RETURN OBJECTIVEBATCH OPTIMIZATION WITH EXPECTED RETURN OBJECTIVE
No exploration just maximize the expected return:

We can approximate  for seen state-action pairs  using Monte-Carlo returns

Note:  is the action chosen at time  by the policy that generated the data.
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MONTE-CARLO GRADIENT ESTIMATOR: REINFORCEMONTE-CARLO GRADIENT ESTIMATOR: REINFORCE

Convenient formulation but does not use all information
High variance!

∇J(θ) = [ ∇ log ( | )]Eπθ
G∗

t πθ a∗
t st
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Where the importance correction is denoted as

Higher variance!

∇J(θ) = [ ∇ log ( | )]Eπb
ρtG∗

t πθ a∗
t st

=ρt ∏
=0t′

t ( | )πθ a∗
t′ st′

( | )πb a∗
t′ st′



MOTIVATIONMOTIVATION



MOTIVATIONMOTIVATION
Formal motivation: Expected return can have exponentially many local minima.



MOTIVATIONMOTIVATION
Formal motivation: Expected return can have exponentially many local minima.
My opinion: Batch policy optimization is the simplest problem that is not well understood.



MOTIVATIONMOTIVATION
Formal motivation: Expected return can have exponentially many local minima.
My opinion: Batch policy optimization is the simplest problem that is not well understood.
(Ilyas, A., et. al (2018). Are Deep Policy Gradient Algorithms Truly Policy Gradient
Algorithms?)



BUT WHY A RETURN DISTRIBUTION?BUT WHY A RETURN DISTRIBUTION?
Estimating the return distribution -> Auxillary tasks
Opens the door to many interesting objectives!
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CONNECTION TO SUPERVISED LEARNINGCONNECTION TO SUPERVISED LEARNING
Reinforcement learning is more general than supervised learning because:

Temporally extended - actions affect the next state.
Rewards/returns are known only for actions taken.
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ESTIMATING THE RETURN DISTRIBUTIONESTIMATING THE RETURN DISTRIBUTION
If we had full information, then

But we do have estimates on what could-have been: .
How to incorporate this with observed return?
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NAIVE IMPUTATION :NAIVE IMPUTATION :

Estimate return by some constant  for all actions not taken
We already do this! 
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Old idea, semi-recently used for policy evaluation
Uses more information and leverages generalization
This estimator is used when 
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ii

tt sstt aaii
tt 𝟙𝟙 ==aaii

tt aa∗∗
tt

(( −− bb)) −− AA(( ,, ))GG∗∗
tt sstt aa∗∗

tt

ββtt



DOUBLY ROBUST ADVANTAGE ESTIMATOR :DOUBLY ROBUST ADVANTAGE ESTIMATOR :

New idea: include baseline  to lower variance

== AA(( ,, )) ++GĜ̂
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DOUBLY ROBUST ADVANTAGE ESTIMATOR :DOUBLY ROBUST ADVANTAGE ESTIMATOR :

New idea: include baseline  to lower variance

Where  and 

This estimator is used to compare against baseline approaches ( )
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FORWARD KL DIVERGENCE :FORWARD KL DIVERGENCE :

Very common classi�cation objective, convex in  if  is �xed.

But  depends on !
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Similar to expected return, sometimes referred to as entropy-regularized expected return.
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BACKWARD KL DIVERGENCE :BACKWARD KL DIVERGENCE :

Similar to expected return, sometimes referred to as entropy-regularized expected return.
This objective is the focus of the talk!
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BACKWARD KL DIVERGENCE INCORPORATES AN ENTROPY REGULARIZERBACKWARD KL DIVERGENCE INCORPORATES AN ENTROPY REGULARIZER

What if we set the entropy term to zero? Only the cross-entropy term would remain:
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VARIANCE ANALYSISVARIANCE ANALYSIS
Not going to hammer you with more equations..
if  is �xed, the analytic gradient variance is the same except:

Importance corrected expected return has a  term
Backward KL has a  term.
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EXPERIMENTSEXPERIMENTS



CARTPOLECARTPOLE
2 actions: move left or right
State: (cart-position, cart-velocity, pole-angle, pole-velocity)
Receives reward of 1 for every time step it stays upright and within a range.
Episode terminates at t = 200



'WAY OFF-POLICY' CARTPOLE'WAY OFF-POLICY' CARTPOLE
Uniformly random behavior policy
Only 50 trajectories (average length of 22)



SOME PREVIOUS WORK ON THIS PROBLEMSOME PREVIOUS WORK ON THIS PROBLEM

(Liu, Y. et al. (2019). Off-policy policy gradient with state distribution correction)

"[..] is a very challenging data set for off-policy policy optimization methods
to learn from as this policy does not attain the desired upright con�guration

for any prolonged period of time."
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CONCLUSIONSCONCLUSIONS
Deep Reinforcement learning doesn't work on hard problems yet



ADDENDUMADDENDUM
Of course, that's what makes them hard.
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Different from distributional RL
How to extend to continuous actions?
Is it linked with choice in objective?

New objectives with the return distribution
Many choices: unclear which objective is optimal.
Strong evidence that expected return is not always best.

Future work
Have been avoiding bootstrapping: does this alleviate or worsen instabilities?



THANK YOU.THANK YOU.
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