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BATCH OFF-POLICY POLICY OPTIMIZATION

e Batch of [NV trajectories of length 1}, generated by behavior policy 73
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e How to best use this experience to learn some other target policy mg?
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e Discretesetofactions:1... A.
e Episodic, withy = 1.
e Boltzmann Policy:

e%(st@g)

A ik
D iy eBlena)

mo(ay|st) =



BATCH OPTIMIZATION WITH EXPECTED RETURN OBJECTIVE



BATCH OPTIMIZATION WITH EXPECTED RETURN OBJECTIVE

e No exploration just maximize the expected return:

ZZ:M {Zwe |5) g, (5 a)}.



BATCH OPTIMIZATION WITH EXPECTED RETURN OBJECTIVE

e No exploration just maximize the expected return:
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e We can approximate q(s, ai) for seen state-action pairs q(st, a;‘) using Monte-Carlo returns
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e Note: a; is the action chosen at time ¢ by the policy that generated the data.
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e Convenient formulation but does not use all information
e High variance!
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e Formal motivation: Expected return can have exponentially many local minima.

e My opinion: Batch policy optimization is the simplest problem that is not well understood.

e (llyas, A., et. al (2018). Are Deep Policy Gradient Algorithms Truly Policy Gradient
Algorithms?)



BUT WHY A RETURN DISTRIBUTION?

e Estimating the return distribution -> Auxillary tasks
e Opens the door to many interesting objectives!
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CONNECTION TO SUPERVISED LEARNING

Reinforcement learning is more general than supervised learning because:

e Temporally extended - actions affect the next state.
e Rewards/returns are known only for actions taken.
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e |f we had full information, then
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ESTIMATING THE RETURN DISTRIBUTION

e |f we had full information, then
eCi
224:1 eCi

e Butwe do have estimates on what could-have been: gy(s, a).
e How to incorporate this with observed return?

p(GY) =
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NAIVE IMPUTATION :

A Gy —c
Gt =Cct ﬂai:az‘ 515

e Estimate return by some constant ¢ for all actions not taken
e We already do this'c = 0
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DOUBLY ROBUST ESTIMATOR

)

Gi — QH(SHG’ZF)

Gt — QQ(St, a’fi) T /I]ai:a;‘ /Bt

e Oldidea, semi-recently used for policy evaluation
e Uses more information and leverages generalization
e This estimator isused when /N =1
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DOUBLY ROBUST ADVANTAGE ESTIMATOR :
(Gf —b) — A(s¢,a;)
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e New idea: include baseline b to lower variance

e Wherevyg(st) = Zle mo(al|s:)qy(se, al) and A(st, al) = qp(st, al) — vg(st)
e This estimator is used to compare against baseline approaches (/N > 1)



OBJECTIVE FUNCTIONS FROM SUPERVISED LEARNING



FORWARD KL DIVERGENCE :

o p(G})

p(G))log
t=0 i—1 mo (st a;)



FORWARD KL DIVERGENCE :

T, A 2L
E\ -\ G
. p 10g ( t)
=0 i=1 776’(3?57&15)

e Very common classification objective, convex in 8 if p(G) is fixed.
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=0 i=1 776’(3757&15)

e Very common classification objective, convex in 8 if p(G) is fixed.
e But p(G) depends on 6!
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e Similar to expected return, sometimes referred to as entropy-regularized expected return.
e This objective is the focus of the talk!




SOME ANALYTICAL RESULTS



BACKWARD KL DIVERGENCE INCORPORATES AN ENTROPY REGULARIZER
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BACKWARD KL DIVERGENCE INCORPORATES AN ENTROPY REGULARIZER
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e What if we set the entropy term to zero? Only the cross-entropy term would remain:
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FORWARD VS BACKWARD KL WITH ENTROPY TERM
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VARIANCE ANALYSIS

e Not going to hammer you with more equations..

° ifp(G) is fixed, the analytic gradient variance is the same except:
= Importance corrected expected return has a (G*)? term
» Backward KLhasa (G* — q(a}|s;))? term.



EXPERIMENTS



CARTPOLE

2 actions: move left or right

State: (cart-position, cart-velocity, pole-angle, pole-velocity)

Receives reward of 1 for every time step it stays upright and within a range.
Episode terminates att = 200




'WAY OFF-POLICY' CARTPOLE

e Uniformly random behavior policy
e Only 50 trajectories (average length of 22)




SOME PREVIOUS WORK ON THIS PROBLEM

"[..]is a very challenging data set for off-policy policy optimization methods
to learn from as this policy does not attain the desired upright configuration
for any prolonged period of time."

Cart pole

—— Off-PAC
OPPOSD
—— ACER
—— SAC
—— Behavior

/

2000 4000 6000 8000 10000
Number of policy gradient step

e (Liu,Y.etal.(2019). Off-policy policy gradient with state distribution correction)



1 TRAJECTORY PER BATCH WITH NO BASELINE

mean_return for target policy over 30 runs and 20 evaluations per run

—— params = ['BackwardKL', 'AdamOptimizer', 0.00098]
—— params = ['BackwardKLnoent', 'GradientDescentOptimizer', 0.0039]
params = ['ExpectedReturn’, 'AdamOptimizer’, 0.00098]
--- params = ['ExpectedReturncorrection’, 'AdamOptimizer', 0.00024]
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1 TRAJECTORY PER BATCH WITH NO BASELINE VARIANCE:

original_grad_var for target policy over 30 runs and 20 evaluations per run
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8 TRAJECTORY PER BATCH WITH TIME-DEPENDENT BASELINE :

mean_return for target policy over 30 runs and 20 evaluations per run

—— params = ['BackwardKL', '‘AdamOptimizer', 0.00098]

1 —— params = ['BackwardKLnoent', 'GradientDescentOptimizer', 0.00098]
params = ['ExpectedReturn’, 'AdamOptimizer’, 0.00024]

--- params = ['ExpectedReturncorrection’, '"AdamOptimizer', 6.1e-05]
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8 TRAJECTORY PER BATCH WITH TIME-DEPENDENT BASELINE VARIANCE:

original_grad_var for target policy over 30 runs and 20 evaluations per run

—— params = ['BackwardKL', 'AdamOptimizer', 0.0039]
—— params = ['BackwardKLnoent', 'GradientDescentOptimizer', 0.016]

params = ['ExpectedReturn’, 'AdamOptimizer’, 0.0039]

--- params = ['ExpectedReturncorrection’, "AdamOptimizer', 0.00098]

1000 1500
Number of policy gradient updates




CONCLUSIONS

e Peep Reinforcement learning doesn't work on hard problems yet



ADDENDUM

e Of course, that's what makes them hard.
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SUMMARY

e The returndistribution
= Different from distributional RL
= How to extend to continuous actions?
= |s it linked with choice in objective?

e New objectives with the return distribution
= Many choices: unclear which objective is optimal.
= Strong evidence that expected return is not always best.

e Future work
= Have been avoiding bootstrapping: does this alleviate or worsen instabilities?



THANK YOU.



QUESTIONS?



