LEARNING AND USING THE RETURN DISTRIBUTION IN OFF-POLLCY POLLCY OPTIMIIZATION

Alex Lewandowski

BATCH OFF-POLCY POLLCY OPTIMIZATION

- Batch of N trajectories of length T_{n} generated by behavior policy π_{b}

$$
\left\{\left\{\left(s_{t}, a_{t}, \pi_{b}\left(a_{t} \mid s_{t}\right), r_{t+1}\right)\right\}_{t=0}^{T_{n}}\right\}_{n=1}^{N} .
$$

- How to best use this experience to learn some other target policy π_{θ} ?

SOME BACKGROUND AND NOTATION..

SOME BACKGROUND AND NOTATION..

- Discrete set of actions : $1 \ldots$. .

SOME BACKGROUND AND NOTATION..

- Discrete set of actions : $1 \ldots$. A.
- Episodic, with $\gamma=1$.

SOME BACKGROUND AND NOTATION..

- Discrete set of actions : $1 \ldots$. .
- Episodic, with $\gamma=1$.
- Boltzmann Policy:

$$
\pi_{\theta}\left(a_{t}^{j} \mid s_{t}\right)=\frac{e^{q_{\theta}\left(s_{t}, a_{t}^{j}\right)}}{\sum_{i=1}^{A} e^{q_{\theta}\left(s_{t}, a_{t}^{i}\right)}}
$$

BATCH OPTIMIZATION WITH EXPECTED RETURN OBIECTIVE

BATCH OPTIMIZATION WITH EXPECTED RETURN OBIECTIVE

- No exploration just maximize the expected return:

$$
J(\theta)=\sum_{s} \mu(s)\left[\sum_{i=1}^{A} \pi_{\theta}\left(a^{i} \mid s\right) q_{\pi_{\theta}}\left(s, a^{i}\right)\right]
$$

BATCH OPTIMIZATION WITH EXPECTED RETURN OBIECTIVE

- No exploration just maximize the expected return:

$$
J(\theta)=\sum_{s} \mu(s)\left[\sum_{i=1}^{A} \pi_{\theta}\left(a^{i} \mid s\right) q_{\pi_{\theta}}\left(s, a^{i}\right)\right]
$$

- We can approximate $q\left(s, a^{i}\right)$ for seen state-action pairs $q\left(s_{t}, a_{t}^{*}\right)$ using Monte-Carlo returns

$$
q\left(s_{t}, a_{t}^{*}\right) \approx G_{t}^{*}=\sum_{t^{\prime}=t}^{T} r_{t^{\prime}}
$$

- Note: a_{t}^{*} is the action chosen at time t by the policy that generated the data.

MONTE-CARLO GRADENT ESTIMATOR: RENIFOREE

$$
\nabla J(\theta)=E_{\pi_{\theta}}\left[G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

MONTE-CARLO GRADENT ESTIMATOR: RENIFOREE

$$
\nabla J(\theta)=E_{\pi_{\theta}}\left[G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

- Convenient formulation but does not use all information

MONTE-CARLO GRADENT ESTIMATOR: RENIFOREE

$$
\nabla J(\theta)=E_{\pi_{\theta}}\left[G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

- Convenient formulation but does not use all information
- High variance!

OFF-POLCOY: IMPORTANCE CORRECTION

$$
\nabla J(\theta)=E_{\pi_{b}}\left[\rho_{t} G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

OFF-POLCOY:IMPORTANCE CORRECTION

$$
\nabla J(\theta)=E_{\pi_{b}}\left[\rho_{t} G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

- Where the importance correction is denoted as

$$
\rho_{t}=\prod_{t^{\prime}=0}^{t} \frac{\pi_{\theta}\left(a_{t^{\prime}}^{*} \mid s_{t^{\prime}}\right)}{\pi_{b}\left(a_{t^{\prime}}^{*} \mid s_{t^{\prime}}\right)}
$$

OFF-POLCOY:IMPORTANCE CORRECTION

$$
\nabla J(\theta)=E_{\pi_{b}}\left[\rho_{t} G_{t}^{*} \nabla \log \pi_{\theta}\left(a_{t}^{*} \mid s_{t}\right)\right]
$$

- Where the importance correction is denoted as

$$
\rho_{t}=\prod_{t^{\prime}=0}^{t} \frac{\pi_{\theta}\left(a_{t^{\prime}}^{*} \mid s_{t^{\prime}}\right)}{\pi_{b}\left(a_{t^{\prime}}^{*} \mid s_{t^{\prime}}\right)}
$$

- Higher variance!

MOTIVATION

MOTIVATION

- Formal motivation: Expected return can have exponentially many local minima.

MOTIVATION

- Formal motivation: Expected return can have exponentially many local minima.
- My opinion: Batch policy optimization is the simplest problem that is not well understood.

MOTIVATION

- Formal motivation: Expected return can have exponentially many local minima.
- My opinion: Batch policy optimization is the simplest problem that is not well understood.
- (Ilyas, A., et. al (2018). Are Deep Policy Gradient Algorithms Truly Policy Gradient Algorithms?)

BUT WHY A RETURN DISTRIBUTION?

- Estimating the return distribution -> Auxillary tasks
- Opens the door to many interesting objectives!

CONNEGTION TO SUPERVISED LEARNNM

Reinforcement learning is more general than supervised learning because:

CONNEGTION TO SUPERVISED LEARNNM

Reinforcement learning is more general than supervised learning because:

- Temporally extended - actions affect the next state.

CONNEGTION TO SUPERVISED LEARNNM

Reinforcement learning is more general than supervised learning because:

- Temporally extended - actions affect the next state.
- Rewards/returns are known only for actions taken.

ESTIMATING THE RETURN DISTRIBUTION

ESTIMATING THE RETURN DISTRIBUTION

- If we had full information, then

$$
p\left(G_{t}^{j}\right)=\frac{e^{G_{t}^{j}}}{\sum_{i=1}^{A} e^{G_{t}^{i}}}
$$

ESTIMATING THE RETURN DISTRIBUTION

- If we had full information, then

$$
p\left(G_{t}^{j}\right)=\frac{e^{G_{t}^{j}}}{\sum_{i=1}^{A} e^{G_{t}^{i}}}
$$

- But we do have estimates on what could-have been: $q_{\theta}(s, a)$.

ESTIMATING THE RETURN DISTRIBUTION

- If we had full information, then

$$
p\left(G_{t}^{j}\right)=\frac{e^{G_{t}^{j}}}{\sum_{i=1}^{A} e^{G_{t}^{i}}}
$$

- But we do have estimates on what could-have been: $q_{\theta}(s, a)$.
- How to incorporate this with observed return?

NAIVE IMPUTATION:

$$
\hat{G}_{t}^{i}=c+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-c}{\beta_{t}}
$$

NAVE IMPUTATION:

$$
\hat{G}_{t}^{i}=c+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-c}{\beta_{t}}
$$

- Estimate return by some constant c for all actions not taken

NAVE IMPUTATION:

$$
\hat{G}_{t}^{i}=c+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-c}{\beta_{t}}
$$

- Estimate return by some constant c for all actions not taken
- We already do this! $c=0$

DOUBLY ROBUST ESTIMATOR:

$$
\hat{G}_{t}^{i}=q_{\theta}\left(s_{t}, a_{t}^{i}\right)+1_{a_{i}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-q_{\theta}\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

DOUBLY ROBUSTS ESTIMATOR:

$$
\hat{G}_{t}^{i}=q_{\theta}\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-q_{\theta}\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- Old idea, semi-recently used for policy evaluation

DOUBLY ROBUST ESTIMATOR:

$$
\hat{G}_{t}^{i}=q_{\theta}\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-q_{\theta}\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- Old idea, semi-recently used for policy evaluation
- Uses more information and leverages generalization

DOUBLY ROBUST ESTIMATOR:

$$
\hat{G}_{t}^{i}=q_{\theta}\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{G_{t}^{*}-q_{\theta}\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- Old idea, semi-recently used for policy evaluation
- Uses more information and leverages generalization
- This estimator is used when $N=1$

DOUBIIY ROBUST ADVANTAEE ESTIMATOR:

$$
\hat{G}_{t}^{i}=A\left(s_{t}, a_{t}^{i}\right)+1_{a_{i}^{i}=a_{t}^{*}} \frac{\left(G_{t}^{*}-b\right)-A\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

DOUBIIY ROBUST ADVANTAEE ESTIMATOR:

$$
\hat{G}_{t}^{i}=A\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{\left(G_{t}^{*}-b\right)-A\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- New idea: include baseline b to lower variance

DOUBIIY ROBUST ADVANTAEE ESTIMATOR:

$$
\hat{G}_{t}^{i}=A\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{\left(G_{t}^{*}-b\right)-A\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- New idea: include baseline b to lower variance
- Where $v_{\theta}\left(s_{t}\right)=\sum_{i=1}^{A} \pi_{\theta}\left(a_{t}^{i} \mid s_{t}\right) q_{\theta}\left(s_{t}, a_{t}^{i}\right)$ and $A\left(s_{t}, a_{t}^{i}\right)=q_{\theta}\left(s_{t}, a_{t}^{i}\right)-v_{\theta}\left(s_{t}\right)$

DOUBIIY ROBUST ADVANTAEE ESTIMATOR:

$$
\hat{G}_{t}^{i}=A\left(s_{t}, a_{t}^{i}\right)+1_{a_{t}^{i}=a_{t}^{*}} \frac{\left(G_{t}^{*}-b\right)-A\left(s_{t}, a_{t}^{*}\right)}{\beta_{t}}
$$

- New idea: include baseline b to lower variance
- Where $v_{\theta}\left(s_{t}\right)=\sum_{i=1}^{A} \pi_{\theta}\left(a_{t}^{i} \mid s_{t}\right) q_{\theta}\left(s_{t}, a_{t}^{i}\right)$ and $A\left(s_{t}, a_{t}^{i}\right)=q_{\theta}\left(s_{t}, a_{t}^{i}\right)-v_{\theta}\left(s_{t}\right)$
- This estimator is used to compare against baseline approaches ($N>1$)

OBJECTIVE FUNGTIONS FROM SUPERVISED LEARNING

FORNARD KL DIVEREENCE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} p\left(\hat{G}_{t}^{i}\right) \log \frac{p\left(\hat{G}_{t}^{i}\right)}{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}
$$

FORNARD KL DIVEREENGE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} p\left(\hat{G}_{t}^{i}\right) \log \frac{p\left(\hat{G}_{t}^{i}\right)}{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}
$$

- Very common classification objective, convex in θ if $p(G)$ is fixed.

FORNARD KL DIVEREENGE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} p\left(\hat{G}_{t}^{i}\right) \log \frac{p\left(\hat{G}_{t}^{i}\right)}{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}
$$

- Very common classification objective, convex in θ if $p(G)$ is fixed.
- But $p(\hat{G})$ depends on θ !

BACKWARD KL DIVEREENEE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} \pi_{\theta}\left(s_{t}, a_{t}^{i}\right) \log \frac{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}{p\left(\hat{G}_{t}^{i}\right)}
$$

BACWWARD KL DVEREENCE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} \pi_{\theta}\left(s_{t}, a_{t}^{i}\right) \log \frac{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}{p\left(\hat{G}_{t}^{i}\right)}
$$

- Similar to expected return, sometimes referred to as entropy-regularized expected return.

BACWWARD KL DVEREENCE:

$$
J(\theta)=\sum_{t=0}^{T_{n}} \sum_{i=1}^{A} \pi_{\theta}\left(s_{t}, a_{t}^{i}\right) \log \frac{\pi_{\theta}\left(s_{t}, a_{t}^{i}\right)}{p\left(\hat{G}_{t}^{i}\right)}
$$

- Similar to expected return, sometimes referred to as entropy-regularized expected return.
- This objective is the focus of the talk!

SOME ANALTTICAL RESULTS

BAGWWARD KL DVERRENVE INGORPORATES AN ENTROPY REGULARIZER

$$
\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log \frac{\pi_{\theta}\left(s, a^{i}\right)}{p\left(\hat{G}^{i}\right)}=\underbrace{\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log \pi_{\theta}\left(s, a^{i}\right)}_{\text {-Entropy }}-\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log p\left(\hat{G}^{i}\right)
$$

BACWWARD KL DVEERENVE LNCORPORATES AN ENTROPY REGULARIZER

$$
\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log \frac{\pi_{\theta}\left(s, a^{i}\right)}{p\left(\hat{G}^{i}\right)}=\underbrace{\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log \pi_{\theta}\left(s, a^{i}\right)}_{\text {-Entropy }}-\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) \log p\left(\hat{G}^{i}\right)
$$

- What if we set the entropy term to zero? Only the cross-entropy term would remain:

$$
\sum_{i=1}^{A}-\pi_{\theta}\left(s, a^{i}\right) \log p\left(\hat{G}^{i}\right)=-\left[\pi_{\theta}\left(a^{*} \mid s\right) \frac{G^{*}-q_{\theta}\left(s, a^{*}\right)}{\beta}+\sum_{i=1}^{A} \pi_{\theta}\left(s, a^{i}\right) q_{\theta}\left(s, a_{i}\right)-\hat{Z}_{\theta}\right]
$$

FORWARD VS BAGWWARD KL WITH ENTTROPY TERM

FORWARD VS BAGWWARD KL WITHOUT ENTROPY TERM

VARIANEE ANALISSIS

VARIANEE ANALISSIS

- Not going to hammer you with more equations..

VARIANEE ANALYSIS

- Not going to hammer you with more equations..
- if $p(G)$ is fixed, the analytic gradient variance is the same except:
- Importance corrected expected return has a $\left(G^{*}\right)^{2}$ term
- Backward KL has a $\left(G^{*}-q\left(a_{t}^{*} \mid s_{t}\right)\right)^{2}$ term.

EXPERIMENTIS

CARTPOLE

- 2 actions: move left or right
- State: (cart-position, cart-velocity, pole-angle, pole-velocity)
- Receives reward of 1 for every time step it stays upright and within a range.
- Episode terminates at $t=200$

'WAY OFF-POLLCY' CARTPOLE

- Uniformly random behavior policy
- Only 50 trajectories (average length of 22)

SOME PREVIIUS WORK ON THIS PROBLEN

"[..] is a very challenging data set for off-policy policy optimization methods to learn from as this policy does not attain the desired upright configuration for any prolonged period of time."

- (Liu, Y. et al. (2019). Off-policy policy gradient with state distribution correction)

1TRAECTORY PER BATCH WITH NO BASELINE:

1TRAEGTORY PER BATCH WITH NO BASELINE VARIANEE:

original_grad_var for target policy over 30 runs and 20 evaluations per run

8 TRAECTORY PER BATCH WITH TIIIE-DEPENDENT BASELINE:

mean_return for target policy over 30 runs and 20 evaluations per run

8 TRALECORYY PER BATCH WTHH TIME-DEPENDENT BASELINE VARIANEE:

original_grad_var for target policy over 30 runs and 20 evaluations per run

CONGLUSIDNS

- Deep Reinforcement learning doesn't work on hard problems yet

ADDENDUM

- Of course, that's what makes them hard.

SUWMARY

SUWMARY

- The return distribution
- Different from distributional RL
- How to extend to continuous actions?
- Is it linked with choice in objective?

SUMMARY

- The return distribution
- Different from distributional RL
- How to extend to continuous actions?
- Is it linked with choice in objective?
- New objectives with the return distribution
- Many choices: unclear which objective is optimal.
- Strong evidence that expected return is not always best.

SUWMARY

- The return distribution
- Different from distributional RL
- How to extend to continuous actions?
- Is it linked with choice in objective?
- New objectives with the return distribution
- Many choices: unclear which objective is optimal.
- Strong evidence that expected return is not always best.
- Future work
- Have been avoiding bootstrapping: does this alleviate or worsen instabilities?

THANK YOU.

QuISTIOMS?

